深度学习参数初始化(weights initializer)策略大全

Xavier初始化是一种用于神经网络权重初始化的方法,旨在保持每一层的梯度大小大致相同,确保训练过程中网络的稳定性。它通过控制权重的方差来避免梯度消失或爆炸问题,从而优化网络的收敛速度和性能。此技术在深度学习中尤其关键,对于构建高效的模型至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注:tf.contrib.layers.xavier_initializer():
该函数返回一个用于初始化权重的初始化程序 “Xavier” 。
这个初始化器是用来保持每一层的梯度大小都差不多相同各个层对状态Z的梯度的方差要保持一致

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值