机器学习面试总结(第四篇)

本文详细介绍了机器学习中几个核心概念和技术,包括k-means算法的具体步骤及其优缺点、改进措施与距离度量方法;常见树模型的特点及生成过程;熵、条件熵的概念及其公式,信息增益的理解和信息增益比的应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

15、k-means算法具体步骤?有哪些优缺点?改进?用了哪些距离度量?
16、有哪些常见的树?树模型的优点?树生成步骤?
17、熵,条件熵的理解及公式?信息增益的理解?信息增益比要解决的问题?
这里写图片描述
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值