论文笔记:Histopathological Image Classification Using Discriminative Feature-Oriented Dictionary Learnin

本文介绍了一种名为DFDL的算法,它通过学习特定类别的词典来提高病理图像分类的准确性。此方法旨在最小化同一类别内部的距离并最大化不同类别间的距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Histopathological Image Classification Using Discriminative Feature-Oriented Dictionary Learning

===============================

利用判别特征导向的词典库学习来进行病理学图像分类
文章发表于 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 3, MARCH 2016

总体思路:提取特征 –> 对特征进行分类

本文提出了一种提取特征的算法DFDL( Discriminative
Feature-oriented Dictionary Learning),用于学习某一类别特定的词典库,用于图片分类或者病理学图像评分。本实验在3个实验集(乳腺癌,肾肺脾ADL,脑肿瘤TCGA)上做测试。

主要算法思想,每一类生成一个词典,词典的子空间可以生成该类的特征表示;任何其他类别的表示都跟这个表示距离很大。类似于类内间距最小,类间间距最大的KNN聚类方法。

方法流程:
这里写图片描述
这里写图片描述

这里写图片描述
Y是某一类,Y是互补类,D是字典,si类的稀缺表示,yl 是真是label, 因此生成该式:这里写图片描述利用多次迭代求解。
主要步骤如下:
这里写图片描述
这里写图片描述
学习到的词典:
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值