【Datawhale AI夏令营第四期】 浪潮源大模型应用开发方向笔记 Task04 RAG模型 人话八股文Bakwaan_Buddy项目创空间部署
什么是RAG:
我能把这个过程理解为Kimi.ai每次都能列出的一大堆网页参考资料吗?Kimi学了这些资料以后,根据这里面的信息综合还生成的答案,而不是仅仅基于自己的现有知识库回答。
Kimi本体认证:差不多就是这个意思!RAG=AI自己的知识库+现成输入/网上现找的,现学提炼信息回答
一个完整的RAG链路:
有道截屏翻译一下:
也就是说,我们传给AI解析的东西都会塞进数据库?那是不是机密的东西(比如未发表的自己的论文)就不能给AI纠错了?、
遗憾的是,确实是这样。
Kimi的后半段说的也很对,需要充分披露AI的使用情况。想之前我港硕在读的时候,我们有门课的老师就允许我们用AI,但是必须在作业开头声明使用的AI及其具体用途,比如翻译润色、资料收集等。
想起来之前一个很常见的例子:好像是词向量空间里面,男人到国王的距离与女人到女王的距离差不多。
之前在Youtube看推荐算法网课的时候,记得很对推荐的选项也是离线完成的。
RAG的在线计算过程和推荐算法感觉有很多相似之处。
说到推荐系统,Youtube上有一个推荐系统网课挺不错,是基于小红书的技术路线做的剖析。B站上好像也有。
https://www.youtube.com/watch?v=5dTOPen28ts&lis