【Datawhale AI夏令营第五期】 CV方向 Task03 各种尝试,想方设法上分
教程部分:
首先是我自己没事瞎点,发现了DataWhale的开源课程平台链接:
https://linklearner.com/learn
传送门
接下来看看本期教程:
我之前跟着B站大佬@同济子豪兄的视频《两天搞定人工智能毕业设计》项目的时候,有一个步骤就是把图片旋转翻转缩放一顿操作,当时只知道是增加模型适应奇葩数据的能力,现在才知道原来这是数据集增强,而且还有这么多我不知道的神奇操作。
而且YOLO支持同时处理图像和视频。
(说到这个“感兴趣的对象”,我还真的很好奇,计算机视觉能显示模型对什么感到好奇吗?如果没有认为给模型传达要识别什么东西的任务,模型眼里的世界是什么样子?模型会不会自发对环境的某个部分感到好奇想了解,并把注意力分配到那里去呢??)
感觉这张表有点不准确?都没具体数字,哪来的概率为0,置信度为92%??
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.pt") # pretrained YOLOv8n model
# Run batched inference on a list of images
results = model(["im1.jpg", "im2.jpg"]) # return a list of Results objects
# Process results list
for result in results:
boxes = result.boxes # Boxes object for bounding box outputs
masks = result.masks # Masks object for segmentation masks outputs
keypoints = result.keypoints # Keypoints object for pose outputs
probs = result.probs # Probs object for classification out