平稳过程、信息率与信道容量解析
1. 平稳过程与信息率
在有限集合 $A$ 中,对于过程 $X = (X_n)_{n\in N}$,我们可以定义随机向量 $X_n = (X_1, \ldots, X_n)$ 以及随机变量 $I_n(\omega) := N(\overline{X_1(\omega)} \cap \overline{X_2(\omega)} \cap \ldots \cap \overline{X_n(\omega)}) = N(\overline{X_n(\omega)})$。显然,$I_n$ 依赖于 $X_n$,并且 $E(I_n) = I(X_1, \ldots, X_n) = I(X_n)$。
对于两个过程 $X$ 和 $Y$,定义它们的联合过程 $(X, Y) = ((X_n, Y_n)_{n\in N})$,根据定义有 $T (X, Y) = I(X) + I(Y) - I(X, Y)$。
1.1 渐近等分性质(Asymptotic Equipartition Property,a.e.p.)
对于平稳过程 $X$,极限 $\lim_{n\rightarrow\infty} \frac{1}{n}I(X_1, \ldots, X_n) = I(X) = I$ 存在。我们不仅关注平均值,还对函数 $I_n(x)$ 的单个值感兴趣,其中 $x = (x_1, \ldots, x_n)$ 是随机向量 $(X_1, \ldots, X_n)$ 的一个特定值。
- 定义 :若序列 $(I_{n + 1} - I_n) {n\in N}$ 满足弱大数定律(w.l.