重复与组合带来的惊喜及物理中的熵
1. 重复与组合带来的惊喜
1.1 组合惊喜的背景
在实际情况中,将多个统计测试的证据进行组合是比较常见的需求。比如,多位研究人员对一种新药或新科学假设进行统计研究;在神经科学中,评估一小群神经元的放电同步性时,会对同一组神经元进行多个不同组合的统计测试。在这种情况下,一个明显的问题是:在多个实例中研究的效应,有些显著而有些不显著,那么该效应的显著性究竟如何?
1.2 组合惊喜的数学分析
假设进行了多个测量或统计测试 (X_1, \cdots, X_n),这些 (X_i) 是实值随机变量,且在首次分析中假设它们相互独立。统计兴趣由描述 (X_{\geq i})((i = 1, \cdots, n))表示,所有 (n) 个测试的共同兴趣由描述 (d = \cap_{i = 1}^{n} X_{\geq i}) 表示。我们的任务是计算 (d) 的惊喜值,即组合惊喜。
- 首先,通过一系列推导得到:
- 若定义随机变量 (Y_i(\omega) := -\log_2 p[X_i \geq X_i(\omega)]),则 (N_d(\omega) = -\log_2 \prod_{i = 1}^{n} p[X_i \geq X_i(\omega)] = \sum_{i = 1}^{n} Y_i(\omega))。
- 且 (S(d(\omega)) = -\log_2 p[N_d \geq N_d(\omega)])。
- 接着分析 (Y_i) 的分布:
- 由 (Y_i(\omega) \geq t \Leftrightarrow -\log_2 p[X_i \geq X_i