31、自然语言处理:从文本分类到聊天机器人构建

构建电影聊天机器人与BERT文本分类

自然语言处理:从文本分类到聊天机器人构建

1. 基于BERT的文本分类

1.1 数据预处理

在进行文本分类任务时,首先需要对数据进行预处理。对于包含邮件文本和标签的数据集,使用 dropna() 方法移除包含缺失内容的记录,然后重置索引并设置列名。以下是具体的代码实现:

emails = emails.dropna()
emails = emails.reset_index(drop=True)
emails.columns = ['text', 'label']
emails.head()

1.2 BERT模型构建

1.2.1 导入模型和分词器

使用 transformers 库导入BERT模型和分词器,并使用预训练的 bert-base-uncased 模型进行初始化。

from transformers import BertTokenizer, TFBertModel, BertConfig, TFBertForSequenceClassification
bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
bmodel = TFBertModel.from_pretrained("bert-base-uncased")
1.2.2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值