自然语言处理:从文本分类到聊天机器人构建
1. 基于BERT的文本分类
1.1 数据预处理
在进行文本分类任务时,首先需要对数据进行预处理。对于包含邮件文本和标签的数据集,使用 dropna()
方法移除包含缺失内容的记录,然后重置索引并设置列名。以下是具体的代码实现:
emails = emails.dropna()
emails = emails.reset_index(drop=True)
emails.columns = ['text', 'label']
emails.head()
1.2 BERT模型构建
1.2.1 导入模型和分词器
使用 transformers
库导入BERT模型和分词器,并使用预训练的 bert-base-uncased
模型进行初始化。
from transformers import BertTokenizer, TFBertModel, BertConfig, TFBertForSequenceClassification
bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
bmodel = TFBertModel.from_pretrained("bert-base-uncased")