华为OD机考2025B卷 - 最佳投资方式/虚拟游戏理财(Java & Python& JS & C++ & C )

最新华为OD机试

真题目录:点击查看目录
华为OD面试真题精选:点击立即查看

2025华为od 机试2025B卷-华为机考OD2025年B卷

题目描述

在一款虚拟游戏中生活,你必须进行投资以增强在虚拟游戏中的资产以免被淘汰出局。

现有一家Bank,它提供有若干理财产品 m 个,风险及投资回报不同,你有 N(元)进行投资,能接收的总风险值为X。

你要在可接受范围内选择最优的投资方式获得最大回报。

备注:

  • 在虚拟游戏中,每项投资风险值相加为总风险值;
  • 在虚拟游戏中,最多只能投资2个理财产品;
  • 在虚拟游戏中,最小单位为整数,不能拆分为小数;
  • 投资额*回报率=投资回报

输入描述

第一行:

  • 产品数(取值范围[1,20])

  • 总投资额(整数,取值范围[1, 10000])

  • 可接受的总风险(整数,取值范围[1,200])

第二行:产品投资回报率序列,输入为整数,取值范围[1,60]

第三行:产品风险值序列,输入为整数,取值范围[1, 100]

第四行:最大投资额度序列,输入为整数,取值范围[1, 10000]

输出描述

每个产品的投资额序列

用例

输入 5 100 10
10 20 30 40 50
3 4 5 6 10
20 30 20 40 30
输出 0 30 0 40 0
说明 投资第二项30个单位,第四项40个单位,总的投资风险为两项相加为4+6=10

解题思路

在满足总风险不超过容忍度和总投资额不超过预算的前提下,通过遍历选择单个两个理财产品的组合来最大化投资回报。

伪代码如下:

  1. 初始化最大回报值为0。
  2. 遍历所有理财产品:
    a. 如果单个产品的风险值和投资额均不超过限制,考虑其回报值。
    b. 更新最大回报值。
  3. 再次遍历所有理财产品组合(两两配对):
    a. 如果两个产品的风险值之和和投资额之和均不超过限制,考虑这两个产品的回报值之和。
    b. 更新最大回报值。
  4. 返回最大回报值。

</

### 华为OD机考2025B题库及相关资料 华为OD机考2025B的题库和相关资料可以通过以下方式获取或了解。以下是关于2025B的具体内容、备考建议以及相关信息。 #### 1. 题库来源与获取方式 华为OD机考2025B的题库通常由官方提供,但具体题目不会完全公开。考生可以通过以下途径获取相关资料: - **官方在线OJ环境**:华为提供了专门的在线OJ环境用于刷题[^2]。通过私信联系开通OJ环境,可以模拟真实考试场景并练习类似题目。 - **第三方平台**:例如牛客网等平台会整理历年真题及高频考点,供考生参考[^4]。 - **内部分享**:部分参加过考试的考生会在社区中分享经验与题目类型,这些资源可以帮助理解考试模式[^1]。 #### 2. 考试内容概述 2025B主要考察以下几个方面: - **算法设计与实现**:涉及基础数据结构(如数组、链表、栈、队列)和常见算法(如排序、查找、动态规划)[^1]。 - **编程语言基础**:支持多种编程语言(C++JavaPythonJavaScript等),考生需熟悉所选语言的基本语法与标准库[^4]。 - **实际问题解决能力**:题目通常以实际应用场景为背景,例如数据分类、路径规划等问题[^3]。 #### 3. 备考建议 为了更好地准备2025B,以下是一些具体的备考建议: - **熟悉输入输出方式**:不同语言有各自的输入输出规范。例如,Python使用`input()`和`print()`,C++使用`cin`和`cout`。 - **掌握常见算法模板**:包括但不限于快速排序、二分查找、深度优先搜索(DFS)、广度优先搜索(BFS)等。 - **模拟真实考试环境**:利用在线OJ平台进行模拟练习,确保在规定时间内完成题目[^2]。 #### 4. 示例代码 以下是一个简单的示例代码,展示如何处理输入输出并解决问题: ```python # 数据分类问题示例 def data_classification(data, threshold): result = [] for item in data: if item &gt; threshold: result.append(item) return result # 输入处理 if __name__ == &quot;__main__&quot;: n = int(input()) # 数据数量 data = list(map(int, input().split())) # 数据列表 threshold = int(input()) # 阈值 output = data_classification(data, threshold) print(len(output)) # 输出符合条件的数据数量 ``` 此代码展示了如何读取输入数据并根据条件筛选结果[^4]。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法大师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值