Opencv学习笔记 - 基于背景扣除进行移动物体检测

本文介绍了基于背景扣除的移动物体检测方法,包括背景模型的初始化和更新,使用MOG2和KNN算法,以及如何通过非极大值抑制获取干净的运动蒙版。背景扣除相比帧间差分和光流提供了更好的运动检测效果,适用于相机静止的场景,但在自动驾驶等场景中可能需要更复杂的深度学习方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简述

        在第1篇中,我们使用帧间差分,在第2篇中,我们使用光流来检测运动。这两种方法都很简单,但是结果也只能说是差强人意吧。

        背景扣除算法概述如下:

        1、初始化背景模型

        2、使用新图像框架更新背景模型

        3、从背景模型获取前景蒙版        

        4、从前景蒙版获取干净的运动蒙版

        5、从 Motion Mask 获取初始运动检测

        6、对初始运动检测执行非极大值抑制

        7、重复步骤 2–6

二、背景扣除

        在背景减法中,从当前帧中减去学习的背景模型以获得前景蒙版。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值