Python视觉深度学习系列教程 第二卷 第2章 网络作为特征提取器

本章探讨了迁移学习的概念,特别是如何使用预训练的卷积神经网络(CNN)作为特征提取器。通过在狗猫、CALTECH-101和Flowers-17数据集上提取特征,然后训练分类器,实现超过95%的分类准确率。介绍了HDF5数据格式在存储特征向量中的作用,以及如何实现这一过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        第二卷 第二章 网络作为特征提取器

        在新的几章中,我们将讨论迁移学习的概念,即使用预训练模型作为“捷径”从最初未经训练的数据中学习模式的能力。

        考虑一个传统的机器学习场景,我们面临两个分类挑战。在第一个挑战中,我们的目标是训练卷积神经网络来识别图像中的狗和猫(我们将在第10章中进行)。

        然后,在第二个项目中,我们的任务是识别三种不同的熊:灰熊、北极熊和大熊猫。使用机器学习、神经网络和深度学习中的标准实践,我们将这些挑战视为两个独立的问题。首先,我们将收集足够的狗和猫标记数据集,然后在该数据集上训练模型。然后我们将第二次重复这个过程,只是这一次,收集我们熊品种的图像,然后在标记的熊数据集之上训练一个模型。

        迁移学习提出了一种不同的训练范式——如果我们可以使用现有的预训练分类器并将其用作新分类任务的起点会怎样?在上述提出的挑战的背景下,我们将首先训练一个卷积神经网络来识别狗与猫。然后,我们将使用在狗和猫数据上训练的相同CNN来区分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值