第二卷 第二章 网络作为特征提取器
在新的几章中,我们将讨论迁移学习的概念,即使用预训练模型作为“捷径”从最初未经训练的数据中学习模式的能力。
考虑一个传统的机器学习场景,我们面临两个分类挑战。在第一个挑战中,我们的目标是训练卷积神经网络来识别图像中的狗和猫(我们将在第10章中进行)。
然后,在第二个项目中,我们的任务是识别三种不同的熊:灰熊、北极熊和大熊猫。使用机器学习、神经网络和深度学习中的标准实践,我们将这些挑战视为两个独立的问题。首先,我们将收集足够的狗和猫标记数据集,然后在该数据集上训练模型。然后我们将第二次重复这个过程,只是这一次,收集我们熊品种的图像,然后在标记的熊数据集之上训练一个模型。
迁移学习提出了一种不同的训练范式——如果我们可以使用现有的预训练分类器并将其用作新分类任务的起点会怎样?在上述提出的挑战的背景下,我们将首先训练一个卷积神经网络来识别狗与猫。然后,我们将使用在狗和猫数据上训练的相同CNN来区分