Python视觉深度学习系列教程 第三卷 第3章 准备ImageNet(2)

本文详细介绍了如何构建ImageNet数据集,包括创建配置文件、辅助工具、列表和均值文件,以及使用mxnet的im2rec工具将图像转换为紧凑的记录文件。通过调整大小、编码和质量参数,实现了高效的数据压缩,减少了训练过程中的I/O操作,加快了训练速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        第三卷 第三章 准备ImageNet(2)

        1、构建 ImageNet 数据集

        构建 ImageNet 数据集的总体目标是让我们可以从头开始训练卷积神经网络。 因此,我们将在为 CNN 做准备的背景下回顾构建 ImageNet 数据集。 为此,我们将首先定义一个配置文件,该文件存储所有相关的图像路径、纯文本路径以及我们希望包含的任何其他设置。

        我们将定义一个名为 ImageNetHelper 的 Python 类,使我们能够快速轻松地构建我们用于训练、测试和验证拆分的 .lst 文件。 .lst 文件中的每一行都包含唯一的图像 ID、类标签和输入图像的完整路径。 然后,我们将能够将这些 .lst 文件与 mxnet 工具 im2rec 结合使用,将我们的图像文件转换为有效打包的记录文件。

        稍后将在执行均值归一化时使用的训练集的平均红色、绿色和蓝色通道平均值。

        1.1 第一个 ImageNet 配置文件

        创建一个imagenet_alexnet_config.py文件。

# import the necessary packages
from os import path

# define the base path to where the Ima
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值