第三卷 第三章 准备ImageNet(2)
1、构建 ImageNet 数据集
构建 ImageNet 数据集的总体目标是让我们可以从头开始训练卷积神经网络。 因此,我们将在为 CNN 做准备的背景下回顾构建 ImageNet 数据集。 为此,我们将首先定义一个配置文件,该文件存储所有相关的图像路径、纯文本路径以及我们希望包含的任何其他设置。
我们将定义一个名为 ImageNetHelper 的 Python 类,使我们能够快速轻松地构建我们用于训练、测试和验证拆分的 .lst 文件。 .lst 文件中的每一行都包含唯一的图像 ID、类标签和输入图像的完整路径。 然后,我们将能够将这些 .lst 文件与 mxnet 工具 im2rec 结合使用,将我们的图像文件转换为有效打包的记录文件。
稍后将在执行均值归一化时使用的训练集的平均红色、绿色和蓝色通道平均值。
1.1 第一个 ImageNet 配置文件
创建一个imagenet_alexnet_config.py文件。
# import the necessary packages
from os import path
# define the base path to where the Ima