Python视觉深度学习系列教程 第三卷 第4章 在ImageNet上训练AlexNet

本章介绍如何在ImageNet上使用mxnet实现并训练AlexNet,包括网络架构、训练和验证过程。实验对比了激活前后的批量归一化效果,以及ReLU与ELU激活函数的影响。结果显示,激活后批量归一化和使用ELU能提升模型性能,最终在测试集上获得59.80% rank-1和81.75% rank-5的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        第三卷 第四章 在ImageNet上训练AlexNet

        在上一章中,我们详细讨论了 ImageNet 数据集;具体来说,数据集的目录结构和所使用的支持元文件为每个图像提供了类标签。 我们定义了两组文件:

        1. 一个配置文件,允许我们在 ImageNet 上训练卷积神经网络时轻松创建新实验。

        2. 一组实用程序脚本,用于准备将数据集从磁盘上的原始图像转换为有效打包的mxnet记录文件。

        .rec 文件只需要生成一次——我们可以将这些记录文件重用于我们希望执行的任何 ImageNet 分类实验。

        配置文件本身也是可以复用的。我们将对 VGGNet、GoogLeNet、ResNet 和 SqueezeNet 使用相同的配置文件——配置文件的唯一方面需要在以下情况下更改 在 ImageNet 上训练一个新网络是:

        1. 网络架构的名称

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值