机器学习笔记 - 使用pytorch + yolov5训练自定义数据集

PyTorch实现YOLOv5训练自定义数据集
本文介绍了使用YOLOv5训练自定义数据集的步骤,包括数据集来源、数据准备、YOLOv5网络结构、模型下载与配置、训练过程以及模型验证。数据集来源于Kaggle的大堡礁棘冠海星识别任务。训练涉及CSP-Darknet53、SPP和PANet等组件,并提供了训练参数的解释。训练完成后,可以通过detect.py进行预测。

一、数据集介绍

        数据集的来源是Kaggle竞赛,帮助保护大堡礁的棘冠海星的数据集,可以在TensorFlow - Help Protect the Great Barrier Reef | Kaggle或者再百度网盘下载。

        数据集一共14个G,23501张图片,其中4919张图片有对应标注数据。

链接:https://pan.baidu.com/s/10ESSxHpWB6HHUAcUNORHCA 
提取码:yu7j

 二、准备数据

        数据组织成如下结构,第一层文件夹

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值