1、sklearn中svm模型的保存与加载调用
(1)使用pickle
# 模型保存
import pickle
model.fit(train_X, train_y)
s=pickle.dumps(model)
f=open('svm.model', "wb+")
f.write(s)
f.close()
# 模型加载
f2=open('svm.model','rb')
s2=f2.read()
model=pickle.loads(s2)
predicted = model.predict(test_X)
(2)使用joblib
# 模型读取
from sklearn.externals import joblib
model.fit(train_X, train_y)
joblib.dump(model, "train1_model.m")
# 模型调用
model1 = joblib.load("train1_model.m")
expected = test_y
predicted = model1.predict(test_X)
2、panda中删除一列的方法
(1) del df['columns'] #改变原始数据
(2) df.drop('columns',axis=1)#删除不改表原始数据&