机器学习笔记 - 杂记三

本文介绍了在Python机器学习中,如何使用sklearn进行SVM模型的保存与加载,pandas删除列的方法,解决joblib导入问题,以及理解sklearn中的KFold与StratifiedKFold的区别。此外,还探讨了pandas删除满足条件的行和drop函数的参数,以及sklearn创建测试数据集的示例。最后,文章简述了最小二乘法在回归分析中的应用及其分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、sklearn中svm模型的保存与加载调用

(1)使用pickle

# 模型保存
import pickle
model.fit(train_X, train_y)
s=pickle.dumps(model)
f=open('svm.model', "wb+")
f.write(s)
f.close()

# 模型加载
f2=open('svm.model','rb')
s2=f2.read()
model=pickle.loads(s2)
predicted = model.predict(test_X)

(2)使用joblib

# 模型读取
from sklearn.externals import joblib
model.fit(train_X, train_y)
joblib.dump(model, "train1_model.m")

# 模型调用
model1 = joblib.load("train1_model.m")
expected = test_y 
predicted = model1.predict(test_X)

2、panda中删除一列的方法

(1) del df['columns'] #改变原始数据

(2) df.drop('columns',axis=1)#删除不改表原始数据&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值