机器学习笔记 - 深度学习常见问题三

本文介绍了深度学习中的一些核心概念,如损失函数、梯度下降和反向传播。讨论了前馈神经网络与循环神经网络的区别,以及RNN的应用。同时,解释了Softmax和ReLU函数的作用,超参数的重要性,以及学习率设置的影响。还涵盖了Dropout和Batch Normalization的用途,批量梯度下降与随机梯度下降的差异,以及CNN和LSTM的工作原理。最后,阐述了深度学习训练中的Epoch、Batch和Iteration的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、什么是损失函数?

        损失函数也称为“成本”或“错误”,是一种评估模型性能好坏的度量。它用于计算反向传播期间输出层的误差。我们通过神经网络将该误差向后推,并在不同的训练函数中使用它。

2、什么是梯度下降?

        梯度下降是最小化成本函数或最小化错误的最佳算法。目的是找到函数的局部-全局最小值。这决定了模型应该采取的减少误差的方向。

 3、你对反向传播的理解是什么?

        反向传播误差并更新权重以减少误差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值