一、LightGBM框架概述
GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。GBDT不仅在工业界应用广泛,通常被用于多分类、点击率预测、搜索排序等任务;在各种数据挖掘竞赛中也是致命武器,据统计Kaggle上的比赛有一半以上的冠军方案都是基于GBDT。
LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,它使用基于树的学习算法。具有以下优点:
1、更快的训练速度和更高的效率。
2、降低内存使用率。
3、更好的准确性。
4、支持并行、分布式和 GPU 学习。
5、能够处理大规模数据。
&n