机器学习笔记 - AutoML框架LightGBM初体验

本文介绍了LightGBM框架,一个高效、低内存消耗的GBDT实现,其在机器学习任务中表现出优越的性能。文章概述了LightGBM的优势,并提供了快速安装和简单示例,包括在Kaggle表格游乐场2022Feb比赛中的应用,展示了其在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、LightGBM框架概述

        GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。GBDT不仅在工业界应用广泛,通常被用于多分类、点击率预测、搜索排序等任务;在各种数据挖掘竞赛中也是致命武器,据统计Kaggle上的比赛有一半以上的冠军方案都是基于GBDT。

        LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,它使用基于树的学习算法。具有以下优点:

        1、更快的训练速度和更高的效率。

        2、降低内存使用率。

        3、更好的准确性。

        4、支持并行、分布式和 GPU 学习。

        5、能够处理大规模数据。

       &n

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值