机器学习笔记 - 标量、向量、矩阵、张量

这篇博客介绍了机器学习中基础的数学概念,包括标量、向量、矩阵和张量的定义,并通过Python和Numpy库展示了如何创建和操作这些数据结构,包括数组形状、转置、相加以及广播操作的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、标量、向量、矩阵、张量

        标量(Scalar)为一个数字。

        向量(Vector)是一个数字数组。

        矩阵(Matrix)是二维数组。

        张量(Tensor)是一个n维数组n > 2。

标量、向量、矩阵和张量之间的区别

二、使用 Python 和 Numpy 创建向量

1、创建一个一维数组

x = np.array([1, 2, 3, 4])

2、创建一个 (3x2) 矩阵

A = np.array([[1, 2], [3, 4], [5, 6]])

3、数组的形状

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值