机器学习笔记 - 时间序列的趋势分量

本文深入探讨了时间序列分析中的趋势分量,通过移动平均图揭示趋势,并使用线性回归构建趋势模型。以隧道流量数据为例,展示了如何确定和预测线性趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是趋势?

        时间序列的趋势分量代表序列均值的持续、长期变化。 趋势是一系列中移动最慢的部分,代表了最大时间尺度的重要性。 在产品销售的时间序列中,随着越来越多的人知道该产品,市场扩张的影响可能是增加趋势。

四个时间序列中的趋势模式。

         在这里,我们将关注均值趋势。 更一般地说,一个序列中任何持续的和缓慢移动的变化都可能构成一个趋势——例如,时间序列通常在其变化中具有趋势。

二、移动平均线图

        要查看时间序列可能具有什么样的趋势,我们可以使用移动平均图。 为了计算时间序列的移动平均值,我们计算某个定义宽度的滑动窗口内的值的平均值。 图表上的每个点代表位于任一侧窗口内的系列中所有值的平均值。 这个想法是为了消除序列中的任何短期波动,以便只保留长期变化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值