有限元基础(一) Jacobian 矩阵和高斯积分

           好久没有更新博客了~前一段又有点对人生迷茫,玩了一段三国志13,fm,很是懈怠,五一前本来想在把读书时的代码找出来,转换成python代码的任务迟迟没有完成。今天,迎来了三年股市最大跌幅,三月清仓,月定投华能国际,竟然在四月底跑赢了指数,定投的指数基金也在上月成功减仓!准备月定投中国中铁和中国石油,现在这里mark一下!

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

          回归正题,今天要用Python实现了任意四边形单元的面积计算,需要理解的几个基本概念:形函数,等参单元、jacobian矩阵和高斯积分。

         形函数:这个概念的提出前提是单元内所感兴趣的函数是连续的,因此可以建立一组插值函数表达式,方便获得单元内某个坐标所对应的函数值。

 形函数和等餐单元如图所示:

### 有限元分析项目实现方法 #### 有限元分析概述 有限元分析是种数值模拟技术,主要用于解决复杂的工程问题。它的核心思想是将连续体划分为若干个小单元,在这些单元内部假设位移分布规律,并通过插值函数描述场变量的变化[^1]。 #### 二、有限元分析的主要步骤 以下是有限元分析的般流程: ##### 1. **建模阶段** 此阶段的任务是创建有限元模型,具体包括以下内容: - 结构离散化:将研究对象划分为多个小单元(网格划分),这是整个过程中最重要的步。 - 定义几何模型:根据实际结构的形状尺寸建立三维或二维模型。 - 设置材料属性:为每个单元分配合适的材料参数,如弹性模量 \(E\) 泊松比 \(\nu\)。 - 施加边界条件:定义约束条件载荷情况,确保模型能够反映真实的物理现象[^1]。 ##### 2. **计算阶段** 在此阶段,利用数学算法求解由前阶段形成的矩阵方程组。常见的求解器有直接法(如高斯消去法)迭代法(如共轭梯度法)。对于大规模问题,通常采用稀疏矩阵技术高性能计算资源来加速运算过程[^2]。 ##### 3. **后处理阶段** 完成数值求解之后,需要对结果进行可视化展示以便于理解。这可能涉及绘制变形图、应力云图或者动画演示动态响应等操作。现代软件平台如 ABAQUS 或者 ANSYS 提供了丰富的图形界面选项方便用户查看各种类型的输出数据[^3]。 #### 三、基于 Python 的简单实现例子 下面给出段使用 Python 编写的简化版有限元程序框架代码片段作为参考: ```python import numpy as np def stiffness_matrix(E, nu, thickness, coordinates, connectivity): """ 计算局部刚度矩阵 K_e 参数: E (float): 材料杨氏模量 nu (float): 泊松比 thickness (float): 单元厚度 coordinates (list of list): 节点坐标列表 [[x1,y1],...,[xn,yn]] connectivity (list): 当前单元连接节点索引号 [i,j,k,...] 返回: Ke (ndarray): 局部刚度矩阵 """ D = compute_D_matrix(E, nu) # 构造材料性质张量D B = assemble_B_matrix(coordinates, connectivity) # 组装应变-位移矩阵B J = jacobian_determinant(coordinates, connectivity) # 可比行列式的绝对值|J| area = abs(J)*thickness # 微分面积 dA=|J|*t*dξdη Ke = np.dot(np.dot(B.T,D),B)*area # 积分得到Ke=int[B]^T[D][B]*dA return Ke if __name__ == "__main__": pass # 用户可以根据需求扩展更多功能模块... ``` 以上仅为示意部分逻辑架构;完整的解决方案还需要考虑全局组装、施加载荷向量以及最终求解等多个方面的工作内容[^2]。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值