在写這篇博客的时候,翻阅了一些互联网上的资料,发现文献[1]写的比较系统。所以推荐大家读读文献[1].但是出现了一些错误,所以我在此简述一些。如果推理不过去了。可以看看我的简述。
------------------------------------前言
背景:
(1)在医学领域药物剂量反应中,随着药物剂量的增加,疗效和副作用会呈现一定趋势。比如剂量越高,疗效越
高,剂量越高,毒性越大等
(2)评估药物在不同剂量水平下的毒性,并且建议一个对病人既安全又有效的剂量称为最大耐受剂量(Maximum Tolerated Dose)简称 MTD。
(3)随着药物的增加,药物的毒性是非减的。MTD被定义为毒性概率不超过毒性靶水平的最高剂量水平
(4)基于每个剂量水平下病人的毒性反应的比率估计不同,剂量水平下的毒性概率可能不是剂量水平的非减函
数,于是我们可以采用保序回归的方法

L2保序回归


L2保序回归算法
一些具体的定义和命题查看文献[1]

Spark源码分析(大图见附录)

-
-
-
-
-
-
-
-
@Since("1.3.0")
-
class IsotonicRegressionModel @Since("1.3.0") (
-
@Since("1.3.0") val boundaries: Array[Double],
-
@Since("1.3.0") val predictions: Array[Double],
-
@Since("1.3.0") val isotonic: Boolean) extends Serializable with Saveable {
-
-
private val predictionOrd = if (isotonic) Ordering[Double] else Ordering[Double].reverse
-
-
require(boundaries.length == predictions.length)
-
assertOrdered(boundaries)
-
assertOrdered(predictions)(predictionOrd)
-
-
-
-
-
@Since("1.4.0")
-
def this(boundaries: java.lang.Iterable[Double],
-
predictions: java.lang.Iterable[Double],
-
isotonic: java.lang.Boolean) = {
-
this(boundaries.asScala.toArray, predictions.asScala.toArray, isotonic)
-
}
-
-
-
private def assertOrdered(xs: Array[Double])(implicit ord: Ordering[Double]): Unit = {
-
var i = 1
-
val len = xs.length
-
while (i < len) {
-
require(ord.compare(xs(i - 1), xs(i)) <= 0,
-
s"Elements (${xs(i - 1)}, ${xs(i)}) are not ordered.")
-
i += 1
-
}
-
}
-
-
-
-
-
-
-
-
-
@Since("1.3.0")
-
def predict(testData: RDD[Double]): RDD[Double] = {
-
testData.map(predict)
-
}
-
-
-
-
-
-
-
-
-
@Since("1.3.0")
-
def predict(testData: JavaDoubleRDD): JavaDoubleRDD = {
-
JavaDoubleRDD.fromRDD(predict(testData.rdd.retag.asInstanceOf[RDD[Double]]))
-
}
-
-
-
-
-
-
-
-
-
-
-
-
@Since("1.3.0")
-
def predict(testData: Double): Double = {
-
-
def linearInterpolation(x1: Double, y1: Double, x2: Double, y2: Double, x: Double): Double = {
-
y1 + (y2 - y1) * (x - x1) / (x2 - x1)
-
}
-
-
val foundIndex = binarySearch(boundaries, testData)
-
val insertIndex = -foundIndex - 1
-
-
-
-
if (insertIndex == 0) {
-
predictions.head
-
} else if (insertIndex == boundaries.length) {
-
predictions.last
-
} else if (foundIndex < 0) {
-
linearInterpolation(
-
boundaries(insertIndex - 1),
-
predictions(insertIndex - 1),
-
boundaries(insertIndex),
-
predictions(insertIndex),
-
testData)
-
} else {
-
predictions(foundIndex)
-
}
-
}
-
-
-
private[mllib] def boundaryVector: Vector = Vectors.dense(boundaries)
-
-
-
private[mllib] def predictionVector: Vector = Vectors.dense(predictions)
-
-
@Since("1.4.0")
-
override def save(sc: SparkContext, path: String): Unit = {
-
IsotonicRegressionModel.SaveLoadV1_0.save(sc, path, boundaries, predictions, isotonic)
-
}
-
-
override protected def formatVersion: String = "1.0"
-
}
-
-
@Since("1.4.0")
-
object IsotonicRegressionModel extends Loader[IsotonicRegressionModel] {
-
-
import org.apache.spark.mllib.util.Loader._
-
-
private object SaveLoadV1_0 {
-
-
def thisFormatVersion: String = "1.0"
-
-
-
def thisClassName: String = "org.apache.spark.mllib.regression.IsotonicRegressionModel"
-
-
-
case class Data(boundary: Double, prediction: Double)
-
-
def save(
-
sc: SparkContext,
-
path: String,
-
boundaries: Array[Double],
-
predictions: Array[Double],
-
isotonic: Boolean): Unit = {
-
val sqlContext = SQLContext.getOrCreate(sc)
-
-
val metadata = compact(render(
-
("class" -> thisClassName) ~ ("version" -> thisFormatVersion) ~
-
("isotonic" -> isotonic)))
-
sc.parallelize(Seq(metadata), 1).saveAsTextFile(metadataPath(path))
-
-
sqlContext.createDataFrame(
-
boundaries.toSeq.zip(predictions).map { case (b, p) => Data(b, p) }
-
).write.parquet(dataPath(path))
-
}
-
-
def load(sc: SparkContext, path: String): (Array[Double], Array[Double]) = {
-
val sqlContext = SQLContext.getOrCreate(sc)
-
val dataRDD = sqlContext.read.parquet(dataPath(path))
-
-
checkSchema[Data](dataRDD.schema)
-
val dataArray = dataRDD.select("boundary", "prediction").collect()
-
val (boundaries, predictions) = dataArray.map { x =>
-
(x.getDouble(0), x.getDouble(1))
-
}.toList.sortBy(_._1).unzip
-
(boundaries.toArray, predictions.toArray)
-
}
-
}
-
-
@Since("1.4.0")
-
override def load(sc: SparkContext, path: String): IsotonicRegressionModel = {
-
implicit val formats = DefaultFormats
-
val (loadedClassName, version, metadata) = loadMetadata(sc, path)
-
val isotonic = (metadata \ "isotonic").extract[Boolean]
-
val classNameV1_0 = SaveLoadV1_0.thisClassName
-
(loadedClassName, version) match {
-
case (className, "1.0") if className == classNameV1_0 =>
-
val (boundaries, predictions) = SaveLoadV1_0.load(sc, path)
-
new IsotonicRegressionModel(boundaries, predictions, isotonic)
-
case _ => throw new Exception(
-
s"IsotonicRegressionModel.load did not recognize model with (className, format version):" +
-
s"($loadedClassName, $version). Supported:\n" +
-
s" ($classNameV1_0, 1.0)"
-
)
-
}
-
}
-
}
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
@Since("1.3.0")
-
class IsotonicRegression private (private var isotonic: Boolean) extends Serializable {
-
-
-
-
-
-
-
@Since("1.3.0")
-
def this() = this(true)
-
-
-
-
-
-
-
-
@Since("1.3.0")
-
def setIsotonic(isotonic: Boolean): this.type = {
-
this.isotonic = isotonic
-
this
-
}
-
-
-
-
-
-
-
-
@Since("1.3.0")
-
def run(input: RDD[(Double, Double, Double)]): IsotonicRegressionModel = {
-
val preprocessedInput = if (isotonic) {
-
input
-
} else {
-
input.map(x => (-x._1, x._2, x._3))
-
}
-
-
val pooled = parallelPoolAdjacentViolators(preprocessedInput)
-
-
val predictions = if (isotonic) pooled.map(_._1) else pooled.map(-_._1)
-
val boundaries = pooled.map(_._2)
-
-
new IsotonicRegressionModel(boundaries, predictions, isotonic)
-
}
-
-
-
-
-
-
-
-
-
-
-
-
@Since("1.3.0")
-
def run(input: JavaRDD[(JDouble, JDouble, JDouble)]): IsotonicRegressionModel = {
-
run(input.rdd.retag.asInstanceOf[RDD[(Double, Double, Double)]])
-
}
-
-
-
-
-
-
-
private def poolAdjacentViolators(
-
input: Array[(Double, Double, Double)]): Array[(Double, Double, Double)] = {
-
-
if (input.isEmpty) {
-
return Array.empty
-
}
-
-
-
def pool(input: Array[(Double, Double, Double)], start: Int, end: Int): Unit = {
-
val poolSubArray = input.slice(start, end + 1)
-
-
val weightedSum = poolSubArray.map(lp => lp._1 * lp._3).sum
-
val weight = poolSubArray.map(_._3).sum
-
-
var i = start
-
while (i <= end) {
-
input(i) = (weightedSum / weight, input(i)._2, input(i)._3)
-
i = i + 1
-
}
-
}
-
-
var i = 0
-
val len = input.length
-
while (i < len) {
-
var j = i
-
-
-
while (j < len - 1 && input(j)._1 > input(j + 1)._1) {
-
j = j + 1
-
}
-
-
-
if (i == j) {
-
i = i + 1
-
} else {
-
-
-
while (i >= 0 && input(i)._1 > input(i + 1)._1) {
-
pool(input, i, j)
-
i = i - 1
-
}
-
-
i = j
-
}
-
}
-
-
-
val compressed = ArrayBuffer.empty[(Double, Double, Double)]
-
-
var (curLabel, curFeature, curWeight) = input.head
-
var rightBound = curFeature
-
def merge(): Unit = {
-
compressed += ((curLabel, curFeature, curWeight))
-
if (rightBound > curFeature) {
-
compressed += ((curLabel, rightBound, 0.0))
-
}
-
}
-
i = 1
-
while (i < input.length) {
-
val (label, feature, weight) = input(i)
-
if (label == curLabel) {
-
curWeight += weight
-
rightBound = feature
-
} else {
-
merge()
-
curLabel = label
-
curFeature = feature
-
curWeight = weight
-
rightBound = curFeature
-
}
-
i += 1
-
}
-
merge()
-
-
compressed.toArray
-
}
-
-
-
-
-
-
-
-
-
private def parallelPoolAdjacentViolators(
-
input: RDD[(Double, Double, Double)]): Array[(Double, Double, Double)] = {
-
val parallelStepResult = input
-
.sortBy(x => (x._2, x._1))
-
.glom()
-
.flatMap(poolAdjacentViolators)
-
.collect()
-
.sortBy(x => (x._2, x._1))
-
poolAdjacentViolators(parallelStepResult)
-
}
-
}
spark实验

import org.apache.spark.mllib.regression.{IsotonicRegression, IsotonicRegressionModel}
import org.apache.spark.{SparkConf, SparkContext}
object IsotonicRegressionExample {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("IsotonicRegressionExample").setMaster("local")
val sc = new SparkContext(conf)
val data = sc.textFile("C:\\Users\\alienware\\IdeaProjects\\sparkCore\\data\\mllib\\sample_isotonic_regression_data.txt")
// Create label, feature, weight tuples from input data with weight set to default value 1.0.
val parsedData = data.map { line =>
val parts = line.split(',').map(_.toDouble)
(parts(0), parts(1), 1.0)
}
// Split data into training (60%) and test (40%) sets.
val splits = parsedData.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0)
val test = splits(1)
// Create isotonic regression model from training data.
// Isotonic parameter defaults to true so it is only shown for demonstration
val model = new IsotonicRegression().setIsotonic(true).run(training)
// Create tuples of predicted and real labels.
val predictionAndLabel = test.map { point =>
val predictedLabel = model.predict(point._2)
(predictedLabel, point._1)
}
//predictionAndLabel.foreach(println)
/**
* (0.16868944399999988,0.31208567)
(0.16868944399999988,0.35900051)
(0.16868944399999988,0.03926568)
(0.16868944399999988,0.12952575)
(0.16868944399999988,0.0)
(0.16868944399999988,0.01376849)
(0.16868944399999988,0.13105558)
(0.19545421571428565,0.13717491)
(0.19545421571428565,0.19020908)
(0.19545421571428565,0.19581846)
(0.31718510999999966,0.29576747)
(0.5322114566666667,0.4854666)
(0.5368859433333334,0.49209587)
(0.5602243760000001,0.5017848)
(0.5701674724126985,0.58286588)
(0.5801105688253968,0.64660887)
(0.5900536652380952,0.65782764)
(0.5900536652380952,0.63029067)
(0.5900536652380952,0.63233044)
(0.5900536652380952,0.33299337)
(0.5900536652380952,0.36206017)
(0.5900536652380952,0.56348802)
(0.5900536652380952,0.48393677)
(0.5900536652380952,0.46965834)
(0.5900536652380952,0.45843957)
(0.5900536652380952,0.47118817)
(0.5900536652380952,0.51555329)
(0.5900536652380952,0.56297807)
(0.6881693,0.65119837)
(0.7135390099999999,0.66598674)
(0.861295255,0.91330954)
(0.903875573,0.90719021)
(0.9275879659999999,0.93115757)
(0.9275879659999999,0.91942886)
*/
// Calculate mean squared error between predicted and real labels.
val meanSquaredError = predictionAndLabel.map { case (p, l) => math.pow((p - l), 2) }.mean()
println("Mean Squared Error = " + meanSquaredError)
//Mean Squared Error = 0.010049744711808193
// Save and load model
model.save(sc, "target/tmp/myIsotonicRegressionModel")
val sameModel = IsotonicRegressionModel.load(sc, "target/tmp/myIsotonicRegressionModel")
}
}
参考文献
1、http://wenku.baidu.com/link?url=rbcbI3L7M83F62Aey_kyGZk7kwuJxr5ZW61EqFH5T45umsdZOCrAbfpl8a1yuMyzObd1_kG-kQ9DPcSTl7wnoX6UyNN_gT5bBYh_p1yMgD7url=rbcbI3L7M83F62Aey_kyGZk7kwuJxr5ZW61EqFH5T45umsdZOCrAbfpl8a1yuMyzObd1_kG-kQ9DPcSTl7wnoX6UyNN_gT5bBYh_p1yMgD7