【数理统计】矩母函数

矩母函数(MGF)是统计学中的一个重要概念,它通过数学上的泰勒展开帮助我们计算随机变量的矩,即期望值。矩揭示了分布的特性,如均值、方差以及更高阶的不对称性和尾部效应。MGF使得计算变得更为简便,特别是在处理特定分布如指数分布时。通过MGF的导数,我们可以获取随机变量的任意阶矩。MGF的存在性及其性质对于理解和识别分布至关重要,尤其是在风险管理中评估极端事件的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩母函数

1.什么是统计学中的矩

假设我们感兴趣的随机变量是 XXX。那么矩就是 XXX 的期望值,例如,E(X)E(X)E(X)E(X2)E(X^2)E(X2)E(X3)E(X^3)E(X3)、……等等。

我们非常熟悉一阶矩和二阶矩,即平均数 μ=E(X)μ=E(X)μ=E(X) 和方差 E(X2)−μ2E(X^2)-μ^2E(X2)μ2,它们是 XXX 的重要特征。另外,三阶矩表明了分布的不对称性,四阶矩则表明了尾部效应…… 这些矩表明了有关分布的信息。

在这里插入图片描述

2.什么是矩母函数(MGF)

矩生成函数 Moment Generating Function,MGF,又叫矩母函数,顾名思义,就是产生矩的函数。

矩母函数的定义如下。

在这里插入图片描述
当你看到 MGFMGFMGF 的定义,你可能会说 我对 E(etx)E(e^{tx})E(etx) 不感兴趣,我只想知道 E(Xn)E(X^n)E(Xn)。求 MGFMGFMGFnnn 次导数,然后令 t=0t=0t=0,你就会得到 E(Xn)E(X^n)E(Xn)

在这里插入图片描述

3.为什么 MGF 的 n 次导是 E(Xn)

我们将用泰勒级数证明这一点。

在这里插入图片描述

代入 E(etx)E(e^{tx})E(etx)

在这里插入图片描述

ttt 求导。

在这里插入图片描述

如果在 ③ 上继续求导,将得到 E(X2)E(X^2)E(X2)。如果继续求一次导,将得到 E(X3)E(X^3)E(X3)……等等

当我第一次看到矩生成函数时,我无法理解 ttt 在函数中的作用,因为 ttt 似乎是一些我不感兴趣的任意变量。然而,正如你所见,ttt 是一个辅助变量。我们引入 ttt 是为了能够使用微积分(导数),使(我们不感兴趣的)项为零。

4.为什么需要 MGF

但是我们可以用期望值的定义来计算矩,我们到底为什么需要MGF呢?

在这里插入图片描述

当然是为了计算更方便。

在数学课本中,总是让我们求出 二项分布(n,pn,pn,p)、泊松分布(λλλ)、指数分布(λλλ)、正态分布(0,10,10,1 等的矩生成函数。然而,它们从来没有说明为什么 MGFMGFMGF 会有这样的作用。

我们以指数分布的 MGFMGFMGF 为例,带给你惊喜,这是 MGFMGFMGF 作用非常明显的例子。

指数分布的 PDFPDFPDF(概率密度函数)如下。

在这里插入图片描述
现在推导指数的MGF。

在这里插入图片描述
为了使 MGF 存在,期望值 E(etx)E(e^{tx})E(etx) 应该存在。这就是为什么 t−λ<0t - λ < 0tλ<0 是一个需要满足的重要条件,因为否则积分就不会收敛。一旦你知道了 MGF=λλ−tMGF=\frac{λ}{λ-t}MGF=λtλ,计算就成了求导的问题,这比直接计算期望值的积分更容易。

在这里插入图片描述

5.总结

  • 对于任何有效的 MGFMGFMGFM(0)=1M(0)=1M(0)=1。每当你计算 MGFMGFMGF 时,代入 t=0t=0t=0,看看是否为 1。
  • 例如,你可以通过前两个矩,即均值和方差,完全指定正态分布。当你知道分布的多个不同阶导数时,你会对该分布有更多的了解。如果有一个人你没有见过,而你知道他的身高、体重、肤色、最喜欢的爱好等等,你仍然不一定完全了解他,但却得到了越来越多关于他的信息。
  • MGFMGFMGF 的魅力在于,一旦你有了 MGFMGFMGF(预期值存在),你就可以得到任何 NNN 阶导。MGFMGFMGF 将一个随机变量的任意阶导编码为一个单一的函数,以后可以从中再次提取。
  • 一个概率分布是由其 MGFMGFMGF 唯一决定的。如果两个随机变量具有相同的 MGFMGFMGF,那么它们一定具有相同的分布。
  • 分布的一个重要特征是它的尾部有多重,特别是对于金融业的风险管理。如果你记得 2009 年的金融危机,那基本上是没有解决罕见事件发生的可能性。有时,看似随机的分布,假设风险曲线平滑,其中可能有隐藏的隆起。而我们可以用 MGFMGFMGF 来检测这些。

在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G皮T

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值