矩母函数
1.什么是统计学中的矩
假设我们感兴趣的随机变量是 XXX。那么矩就是 XXX 的期望值,例如,E(X)E(X)E(X)、E(X2)E(X^2)E(X2)、E(X3)E(X^3)E(X3)、……等等。
我们非常熟悉一阶矩和二阶矩,即平均数 μ=E(X)μ=E(X)μ=E(X) 和方差 E(X2)−μ2E(X^2)-μ^2E(X2)−μ2,它们是 XXX 的重要特征。另外,三阶矩表明了分布的不对称性,四阶矩则表明了尾部效应…… 这些矩表明了有关分布的信息。
2.什么是矩母函数(MGF)
矩生成函数 Moment Generating Function,MGF
,又叫矩母函数,顾名思义,就是产生矩的函数。
矩母函数的定义如下。
当你看到 MGFMGFMGF 的定义,你可能会说 我对 E(etx)E(e^{tx})E(etx) 不感兴趣,我只想知道 E(Xn)E(X^n)E(Xn)。求 MGFMGFMGF 的 nnn 次导数,然后令 t=0t=0t=0,你就会得到 E(Xn)E(X^n)E(Xn)。
3.为什么 MGF 的 n 次导是 E(Xn)
我们将用泰勒级数证明这一点。
代入 E(etx)E(e^{tx})E(etx)。
对 ttt 求导。
如果在 ③ 上继续求导,将得到 E(X2)E(X^2)E(X2)。如果继续求一次导,将得到 E(X3)E(X^3)E(X3)……等等
当我第一次看到矩生成函数时,我无法理解 ttt 在函数中的作用,因为 ttt 似乎是一些我不感兴趣的任意变量。然而,正如你所见,ttt 是一个辅助变量。我们引入 ttt 是为了能够使用微积分(导数),使(我们不感兴趣的)项为零。
4.为什么需要 MGF
但是我们可以用期望值的定义来计算矩,我们到底为什么需要MGF呢?
当然是为了计算更方便。
在数学课本中,总是让我们求出 二项分布(n,pn,pn,p)、泊松分布(λλλ)、指数分布(λλλ)、正态分布(0,10,10,1) 等的矩生成函数。然而,它们从来没有说明为什么 MGFMGFMGF 会有这样的作用。
我们以指数分布的 MGFMGFMGF 为例,带给你惊喜,这是 MGFMGFMGF 作用非常明显的例子。
指数分布的 PDFPDFPDF(概率密度函数)如下。
现在推导指数的MGF。
为了使 MGF 存在,期望值 E(etx)E(e^{tx})E(etx) 应该存在。这就是为什么 t−λ<0t - λ < 0t−λ<0 是一个需要满足的重要条件,因为否则积分就不会收敛。一旦你知道了 MGF=λλ−tMGF=\frac{λ}{λ-t}MGF=λ−tλ,计算就成了求导的问题,这比直接计算期望值的积分更容易。
5.总结
- 对于任何有效的 MGFMGFMGF,M(0)=1M(0)=1M(0)=1。每当你计算 MGFMGFMGF 时,代入 t=0t=0t=0,看看是否为 1。
- 例如,你可以通过前两个矩,即均值和方差,完全指定正态分布。当你知道分布的多个不同阶导数时,你会对该分布有更多的了解。如果有一个人你没有见过,而你知道他的身高、体重、肤色、最喜欢的爱好等等,你仍然不一定完全了解他,但却得到了越来越多关于他的信息。
- MGFMGFMGF 的魅力在于,一旦你有了 MGFMGFMGF(预期值存在),你就可以得到任何 NNN 阶导。MGFMGFMGF 将一个随机变量的任意阶导编码为一个单一的函数,以后可以从中再次提取。
- 一个概率分布是由其 MGFMGFMGF 唯一决定的。如果两个随机变量具有相同的 MGFMGFMGF,那么它们一定具有相同的分布。
- 分布的一个重要特征是它的尾部有多重,特别是对于金融业的风险管理。如果你记得 2009 年的金融危机,那基本上是没有解决罕见事件发生的可能性。有时,看似随机的分布,假设风险曲线平滑,其中可能有隐藏的隆起。而我们可以用 MGFMGFMGF 来检测这些。