多属性决策的理论与方法

本文介绍了多属性决策的理论与方法,包括简单加权法、熵值法和逼近理想解排序法,并强调了属性权重确定的重要性。此外,还讨论了多属性决策在移动云计算资源共享中的应用以及与其相关的多目标决策的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐两本书《移动云计算-——资源共享技术》 李波著、《多属性决策的理论与方法》徐玖平 吴巍编著。

关注这个点是因为:《移动云计算-——资源共享技术》关于基于多属性决策的垂直切换。是指在考虑多个属性的情况下,选择最优备选方案或进行方案排序的决策问题。多属性决策一般包括两部分内容:1、获取决策信息,一般包括属性权重和属性值,其中属性权重的确定是多属性决策的一个重要内容;2、通过一定的方式对决策信息进行集结并对各候选方案进行排序和择优。在多属性决策问题的求解过程中,属性的权重具有举足轻重的作用,它被用来反映属性的相对重要性,属性越重要,则赋给它的权重应越大,反之则越小。属性权重的确定是多属性决策中的重要问题。三种有代表性的多属性决策算法。

1、简单加权法(smple additive weighting,SAW)法是广泛使用的多属性决策方法。该方法通过负各属性简单线性加权求和来实现最优决策判断。在SAW法中,候选网络的决策系数由其所有属性值的权重和决定。

2、熵值法(EM)利用信息论中的信息熵来确定各网络属性的权重,然后采用简单加权的方法计算网络综合指数,并对综合指数进行排序。信息论中,信息熵是系统差异程度的度量。网络之间某项网络属性的差异程度越大,信息熵越小,该属性提供的信息量就越大;反之,差异程度越小,信息熵越大,该属性所提供的信息量越小。

3、逼近理想解排序法

借助多属性问题的理想解和负理想解对方案集合中的各候选方案进行排序。将方案集合中的各个候选网络与理想解和负理想解的距离进行比较,接近理想解且与负理想解距离较远的方案即为方案推荐两本书《移动云计算-——资源共享技术》 李波著、《多属性决策的理论与方法》徐玖平 吴巍编著。

 

关注这个点是因为:《移动云计算-——资源共享技术》关于基于多属性决策的垂直切换。是指在考虑多个属性的情况下,选择最优备选方案或进行方案排序的决策问题。多属性决策一般包括两部分内容:1、获取决策信息,一般包括属性权重和属性值,其中属性权重的确定是多属性决策的一个重要内容;2、通过一定的方式对决策信息进行集结并对各候选方案进行排序和择优。在多属性决策

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值