推断统计学(Inferential Statistics)
针对不可观察的总体,可以通过分析可观察的资料,科学的对总体进行推断,目的是为了合理的决策提供证据。
点估计值 置信区间
点估计值
- 点估计值正好位于置信区间的中间位置
- 样本均值是总体均值的一个点估计值
- 样本方差是总体方差的一个点估计值
置信度
用来衡量置信区间的不确定性。
比如 置信度为95%,则α为5%。
置信区间Confidence Interval CI
- 置信区间是指由样本统计量所构造的总体参数的估计区间。
- 置信区间是总体参数所处的可能范围。
- [点估计值+/- 可靠性系数*点估计值的标准误差]
- 置信度越高,置信区间越宽。
- 总体方差未知时,置信区间更大,因为不确定性更高
标准化后的置信区间:
上限是Z,下线是-Z(Z分数),均值为0
方差已知和方差未知的置信区间计算公式差别:
方差已知 |
方差未知 |
z统计量 |
t统计量 |
总体标准差 |
样本标准差 |
标准正态分布表格 |
学生t表格 |
假设检验
检验步骤
假设检验顺序:
① 建立(无效假设vs.备择假设) 假设
② 生成检验统计量(测定观测值和无效假设差异)
③ 计算出观测的显著性水平p-value
④ p-value < 显著性水平α à 驳回无效假设
根据数据得出结论的步骤:
- 提出一个假设
- 为假设确定正确的检验
- 进行检验
- 根据结果得出结论
假设 :是一个可以检验的论点。
假设检验详细步骤:
(1)建立假设,确定检验水准:假设有两种,一是无效假设或称零假设H0;二是备择假设H1/HA。
(2)计算检验统计量;
(3)确定P值:将P值与预先规定的检验水准相比,做出推断结论。当P≤α时,拒绝H0,接受H1,差异有统计学意义;当P>α时,不拒绝H0,差异无统计学意义。
点估计量是统计量中的其中一个。
假设 |
符号 |
||
零假设 |
H0 |
待检验的假设 |
事物当前的情况 |