EMQX开启权限认证,添加用户名、密码认证--MQTT

本文详细介绍了如何在EMQX中启用Mnesia认证,包括配置插件、两种认证方式对比、批量管理用户/ClientID认证数据及操作方法。务必注意生产环境禁用匿名认证并保护密码安全。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:前置条件,需要安装EMQX,同时可以访问控制面板


前言

EMQ X 默认配置中启用了匿名认证,任何客户端都能接入 EMQX。没有启用认证插件或认证插件没有显式允许/拒绝(ignore)连接请求时,EMQX 将根据匿名认证启用情况决定是否允许客户端连接。

警告

生产环境中请禁用匿名认证

并配置匿名认证开关allow_anonymous 为false;acl_nomatch为deny

# etc/emqx.conf

## Allow anonymous authentication by default if no auth plugins loaded.
## Notice: Disable the option in production deployment!
##
## Value: true | false
allow_anonymous = false

## Allow or deny if no ACL rules matched.
##
## Value: allow | deny
acl_nomatch = deny

一、认证方式

身份认证是大多数应用的重要组成部分,MQTT 协议支持用户名密码认证,启用身份认证能有效阻止非法客户端的连接。

EMQX 中的认证指的是当一个客户端连接到 EMQX 的时候,通过服务器端的配置来控制客户端连接服务器的权限。

EMQX 支持的认证方式:

内置数据源

使用配置文件与 EMQX 内置数据库提供认证数据源,通过 HTTP API 进行管理,足够简单轻量。

外部数据库

外部数据库可以存储大量数据,同时方便与外部设备管理系统集成。

其他

JWT 认证可以批量签发认证信息,HTTP 认证能够实现复杂的认证鉴权逻辑

二、使用步骤--仅介绍Mnesia(用户名/Client ID)认证

1.开启插件

打开控制台-》插件-》emqx_auth_mnesia-》开启:

2.方式一:预设认证用户(不推荐)

编辑emqx_auth_mnesia.conf配置文件(示例):

# etc/plugins/emqx_auth_mnesia.conf

## clientid 认证数据
auth.client.1.clientid = admin
auth.client.1.password = public

## username 认证数据
auth.user.2.username = admin
auth.user.2.password = public

提示

预设认证数据在配置文件中使用了明文密码,出于安全性与可维护性考虑应当避免使用该功能 

3.方式二:使用 HTTP API 管理认证数据(推荐)

温馨提示:

默认前缀为127.0.0.1:8081/

认证方式为Basic auth认证,默认账号密码为admin/public(失败请确认是否修改密码端口)

添加认证数据

  • Clientid

    # Request
    POST api/v4/auth_clientid
    {
        "clientid": "emqx_c",
        "password": "emqx_p"
    }
    # Response
    {
        "code": 0
    }
    
  • Username

    # Request
    POST api/v4/auth_username
    {
        "username": "emqx_u",
        "password": "emqx_p"
    }
    
    # Response
    {
        "code": 0
    }
    

#批量添加认证数据

  • Clientid

    # Request
    POST api/v4/auth_clientid
    [
        {
        		"clientid": "emqx_c_1",
        		"password": "emqx_p"
        },
        {
            "clientid": "emqx_c_2",
            "password": "emqx_p"
        }
    ]
    
    # Response
    {
        "data": {
            "emqx_c_2": "ok",
            "emqx_c_1": "ok"
        },
        "code": 0
    }
    
  • Username

    # Request
    POST api/v4/auth_username
    [
        {
        		"username": "emqx_u_1",
        		"password": "emqx_p"
        },
        {
            "username": "emqx_u_2",
            "password": "emqx_p"
        }
    ]
    
    # Response
    {
        "data": {
            "emqx_c_2": "ok",
            "emqx_c_1": "ok"
        },
        "code": 0
    }
    

#查看已经添加的认证数据

  • Clientid

    # Request
    GET api/v4/auth_clientid
    
    # Response
    {
      "meta": {
        "page": 1,
        "limit": 10,
        "count": 1
      },
      "data": [
      			"clinetid": "emqx_c",
      			"clinetid": "emqx_c_1",
      			"clinetid": "emqx_c_2"
      		],
      "code": 0
    }
    
  • Username

    # Request
    GET api/v4/auth_username
    
    # Response
    {
      "meta": {
        "page": 1,
        "limit": 10,
        "count": 1
      },
      "data": [
      			"username": "emqx_u",
      			"username": "emqx_u_1",
      			"username": "emqx_u_2"
      		],
      "code": 0
    }
    

#更改已添加的认证数据

  • Clientid

    # Request
    PUT api/v4/auth_clientid/${clientid}
    {
        "password": "emqx_new_p"
    }
    
    # Response
    {
        "code": 0
    }
    
  • Username

    # Request
    PUT api/v4/auth_username/${username}
    {
        "password": "emqx_new_p"
    }
    
    # Response
    {
        "code": 0
    }
    

#查看指定的认证数据

注意此处返回的密码是使用配置文件指定哈希方式加密后的密码:

  • Clientid

    # Request
    GET api/v4/auth_clientid/${clientid}
    
    # Response
    {
        "code": 0,
        "data": {
            "clientid": "emqx_c",
            "password": "091dc8753347e7dc5d348508fe6323735eecdb84fa800548870158117af8a0c0"
        }
    }
    
  • Username

    # Request
    GET api/v4/auth_username/${username}
    
    # Response
    {
        "code": 0,
        "data": {
            "username": "emqx_u",
            "password": "091dc8753347e7dc5d348508fe6323735eecdb84fa800548870158117af8a0c0"
        }
    }
    

#删除指定的 Clientid 认证数据

  • Clinetid

    # Request
    DELETE api/v4/auth_clientid/${clientid}
    
    # Response
    {
        "code": 0
    }
    
  • Username

    # Request
    DELETE api/v4/auth_username/${username}
    
    # Response
    {
        "code": 0
    }

总结

以上就是今天要讲的内容,本文仅仅简单介绍了EMQX启用并设置账号密码。

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是有多懒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值