坐标旋转变换公式

本文详细解析了在二维坐标系中,围绕原点进行逆时针旋转的数学原理。通过引入点P(x,y)和其旋转后的点P'(s,t),利用三角函数和行列式表达,阐述了旋转前后坐标变化的计算公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 围绕原点的旋转
如下图, 在2维坐标上,有一点p(x, y) , 直线opの长度为r, 直线op和x轴的正向的夹角为a。 直线op围绕原点做逆时针方向b度的旋转,到达p’ (s,t)



s = r cos(a + b) = r cos(a)cos(b) – r sin(a)sin(b)   (1.1)
t = r sin(a + b) = r sin(a)cos(b) + r cos(a) sin(b)  (1.2)
其中 x = r cos(a)  , y = r sin(a)
代入(1.1), (1.2) ,
s = x cos(b) – y sin(b)    (1.3)
t = x sin(b) + y cos(b)    (1.4)

 


用行列式表达如下:

在 Python 中,可以使用 statsmodels 模块中的 OLS 类来进行OLS回归模型的拟合和预测。下面是一个简单的示例代码: ```python import numpy as np import pandas as pd import statsmodels.api as sm # 生成随机数据 np.random.seed(123) X = np.random.rand(100) Y = 2*X + 0.5 + np.random.normal(0, 0.1, 100) # 将数据存放在DataFrame对象中 data = pd.DataFrame({'X': X, 'Y': Y}) # 添加截距项 data = sm.add_constant(data) # 拟合OLS回归模型 model = sm.OLS(data['Y'], data[['const', 'X']]) result = model.fit() # 输出回归结果 print(result.summary()) ``` 在上面的代码中,我们首先生成了一个简单的随机数据集,其中 X 是自变量,Y 是因变量。然后,我们将数据存放在了一个 pandas 的 DataFrame 对象中,并使用 sm.add_constant() 函数添加了截距项。接着,我们使用 sm.OLS() 函数拟合了OLS回归模型,并将结果保存在了 result 变量中。最后,我们使用 result.summary() 方法输出了回归结果的详细信息。 需要注意的是,在使用 statsmodels 进行OLS回归模型拟合时,需要显式地添加截距项,否则结果会有偏差。此外,我们还可以使用 result.predict() 方法来进行预测,即: ```python # 进行预测 new_data = pd.DataFrame({'X': [0.1, 0.2, 0.3]}) new_data = sm.add_constant(new_data) prediction = result.predict(new_data) # 输出预测结果 print(prediction) ``` 在上面的代码中,我们首先生成了一个新的数据集 new_data,然后使用 result.predict() 方法对其进行预测,并将结果保存在了 prediction 变量中。最后,我们使用 print() 函数输出了预测结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值