当AI开始写PRD...
“上个月,某大厂用AI工具重构需求文档流程,10人产品组优化至3人,剩下7个‘PRD流水线工人’原地毕业。”
这不是段子,而是真实发生的行业地震。
Gartner最新报告预测:到2027年,60%的“需求翻译型”PM岗位将消失。但更魔幻的是,同期AI产品经理岗位暴增300%,薪资涨幅碾压其他岗位。
这届PM,正在经历一场残酷的“达尔文式淘汰”:
工具型PM(只会画原型、写文档、跟进度)→ 被AI批量优化
AI驯兽师(调教大模型、设计AI产品)→ 年薪百万挖不动
需求老中医(深挖用户痛点、预判行业趋势)→ 越老越吃香
如果你还在用Axure画原型、用Excel排需求优先级、用Jira跟进度——恭喜,你的工作正在被ChatGPT+NotionAI+Midjourney 三位一体取代。
但别慌,这场淘汰赛有明确生存法则:
- 要么成为AI的指挥官(驯化AI做产品)
- 要么成为需求的“人形探针”(AI替代不了的深度洞察)
否则?等着被AI优化吧。
第一类神人:AI驯兽师の生存指南
1. 他们根本不是传统PM,而是“AI产品的造物主”
普通PM:“这个需求下周一上线。”
AI驯兽师:“这个LLM的temperature参数调到0.7,生成结果更符合用户预期。”
他们的日常:
-
用GPT-4模拟千万级用户行为(比AB测试快100倍)
-
训练垂直行业大模型(比如医疗、法律、电商专属AI)
-
设计AI伦理防护栏(防止聊天机器人突然骂甲方爸爸)
真实案例:
某AI医疗产品经理,通过调整提示词(prompt engineering),让AI问诊准确率从72%飙到89%——这TM才是新时代的核心竞争力。
2. 他们的工具箱:不是Axure,而是“AI调教三件套”
传统PM | AI驯兽师 |
---|---|
Axure画原型 | GPT-4生成交互方案 |
Excel排需求 | LangChain搭建AI工作流 |
Jira跟进度 | MLflow监控模型效果 |
未来5年,不会调参的PM=不会用Word的文员。
3. 他们的核心竞争力:不是写文档,而是“让AI听话”
-
Prompt Engineering(不是简单提问,是精准控制AI输出)
-
数据敏感度(从海量日志里挖出AI优化点)
-
伦理设计能力(避免AI歧视、幻觉、胡说八道)
一句话总结:
他们不是“产品经理”,而是“AI产品的架构师”——未来所有产品都将是AI驱动的,不会玩AI的PM注定被淘汰。
第二类狠人:需求老中医の望闻问切
1. 当AI能自动生成100种交互方案,真正的战场在哪?
答案:在人类自己都说不清的“模糊需求”里。
普通PM:“用户说要更快。” → 优化加载速度。
需求老中医:“用户说的‘快’,其实是‘别让我思考’。” → 重构信息架构。
他们的核心能力:
-
从一句“不好用”诊断出组织架构问题
-
把业务方支离破碎的诉求翻译成技术语言
-
预判三年后的生态位(就像10年前看出小程序潜力的大佬)
2. 他们的工具箱:不是Figma,而是“人性洞察三板斧”
工具型PM | 需求老中医 |
---|---|
用户访谈模板 | 心理学+行为经济学 |
A/B测试报告 | 人类学观察法 |
竞品分析框架 | 行业趋势预判 |
案例:
某社交产品PM发现,用户“不爱发动态”不是因为功能差,而是“害怕被熟人judge”——于是做了“匿名星球”,DAU暴涨300%。
AI替代不了这种洞察,因为:
❌ AI不懂人类的虚荣、恐惧、社交焦虑
❌ AI不会从一句吐槽里挖出深层痛点
❌ AI没法预判“下一代用户想要什么”
3. 他们的生存法则:不是“做需求”,而是“定义需求”
未来,“需求翻译型PM”会消失,但“需求定义者”会更值钱。
-
初级PM:把老板的话写成PRD → AI秒杀
-
高级PM:告诉老板“你错了,真实需求是XXX” → 无可替代
一句话总结:
他们不是“需求搬运工”,而是“需求的考古学家”——能挖出人类自己都没意识到的痛点。
未来只有两种PM
-
指挥AI的(AI驯兽师)
-
被AI指挥的(工具型PM)
你现在每天的工作——
是在给自己编写生存程序,还是撰写淘汰通知书?
博主《产品需求分析》教学课程链接直通车:https://edu.csdn.net/course/detail/40465