基于Spark实现随机森林代码

本文介绍了一种使用Apache Spark MLlib库实现随机森林分类的方法。通过加载样本数据并将其划分为训练集和测试集,训练了一个包含三棵树的随机森林模型,并对测试集进行了预测。最终展示了模型的详细结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于Spark实现随机森林代码如下:
public class RandomForestClassficationTest extends TestCase implements Serializable
{

    /**
    * 
    */
    private static final long serialVersionUID = 7802523720751354318L;
    
    class PredictResult implements Serializable{
        /**
        * 
        */
        private static final long serialVersionUID = -168308887976477219L;
        double label;
        double prediction;
        
        public PredictResult(double label,double prediction){
        this.label = label;
        this.prediction = prediction;
        }
        
        @Override
        public String toString(){
            return this.label + " : " + this.prediction ;
        }
    }
    
    
    public void test_randomForest() throws JAXBException{
    
        SparkConf sparkConf = new SparkConf();
        sparkConf.setAppName("RandomForest");
        sparkConf.setMaster("local");
        
        SparkContext sc = new SparkContext(sparkConf);
        String dataPath = RandomForestClassficationTest.class.getResource("/").getPath() + "/sample_libsvm_data.txt";
        
        RDD dataSet = MLUtils.loadLibSVMFile(sc, dataPath);
        RDD[] rddList = dataSet.randomSplit(new double[]{0.7,0.3},1);
        
        RDD trainingData = rddList[0];
        RDD testData = rddList[1];
        
        ClassTag labelPointClassTag = trainingData.elementClassTag();
        
        JavaRDD trainingJavaData = new JavaRDD(trainingData,labelPointClassTag);
        
        int numClasses = 2;
        Map categoricalFeatureInfos = new HashMap();
        int numTrees = 3;
        String featureSubsetStrategy = "auto";
        String impurity = "gini";
        int maxDepth = 4;
        int maxBins = 32;
        
        /**
        * 1 numClasses分类个数为2
        * 2 numTrees 表示的是随机森林中树的个数
        * 3 featureSubsetStrategy
        * 4 
        */
        final RandomForestModel model = RandomForest.trainClassifier(trainingJavaData,
        numClasses,
        categoricalFeatureInfos,
        numTrees,
        featureSubsetStrategy,
        impurity,
        maxDepth,
        maxBins,
        1);

        JavaRDD testJavaData = new JavaRDD(testData,testData.elementClassTag());
        
        JavaRDD predictRddResult = testJavaData.map(new Function(){


        /**
        * 
        */
        private static final long serialVersionUID = 1L;
        
        
        public PredictResult call(LabeledPoint point) throws Exception {
            // TODO Auto-generated method stub
            double pointLabel = point.label();
            double prediction = model.predict(point.features());
            PredictResult result = new PredictResult(pointLabel,prediction);
            return result;
        }
        
        });

        List predictResultList = predictRddResult.collect();
        for(PredictResult result:predictResultList){
            System.out.println(result.toString());
        }
        
            System.out.println(model.toDebugString());
        }
}
得到的随机森林的展示结果如下:
TreeEnsembleModel classifier with 3 trees


Tree 0:
If (feature 435 <= 0.0)
If (feature 516 <= 0.0)
Predict: 0.0
Else (feature 516 > 0.0)
Predict: 1.0
Else (feature 435 > 0.0)
Predict: 1.0
Tree 1:
If (feature 512 <= 0.0)
Predict: 1.0
Else (feature 512 > 0.0)
Predict: 0.0
Tree 2:
If (feature 377 <= 1.0)
Predict: 0.0
Else (feature 377 > 1.0)
If (feature 455 <= 0.0)
Predict: 1.0
Else (feature 455 > 0.0)
Predict: 0.0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值