8、使用神经网络近似非连续函数

使用神经网络近似非连续函数

1. 引言

神经网络在近似非连续函数方面面临挑战,尤其是在处理函数值突然跳跃或下降的点时。传统神经网络依赖于梯度下降算法,该算法在计算非连续函数的偏导数时可能产生不准确的结果。本篇文章将深入探讨如何使用神经网络近似非连续函数,并介绍一种有效的解决方案——微批次方法。

2. 示例5:非连续函数的近似

我们将通过一个具体的示例来理解这个问题。假设我们有一个非连续函数,其值在某些点上突然变化。为了近似这个函数,我们首先尝试使用传统的神经网络处理方法。图1展示了该非连续函数的图表。

Chart of noncontinuous function

2.1 网络架构

用于近似非连续函数的神经网络架构如下表所示:

神经元数量
输入层 1
隐藏层1 10
隐藏层2 10
输出层 1

2.2 程序代码

以下是用于训练神经网络的程序代码片段:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值