评估慢性阻塞性肺疾病(COPD)患者吸入器使用效果
1. 研究背景与目标
在呼吸检测领域,已有不少相关研究。有检测呼吸不同阶段的系统,也有通过处理呼吸音来测量肺功能的算法。此前,我们在设计人工智能技术处理咳嗽方面做了一些工作,包括区分慢性阻塞性肺疾病(COPD)症状的咳嗽和健康人的咳嗽,以及从正常咳嗽中检测COPD和充血性心力衰竭(CHF)。而本次研究的目标是通过监测和分析吸入器使用前后的咳嗽和呼吸音,来检测吸入器使用的有效性,这是一个尚未有人尝试但影响重大的问题。
数据收集过程困难,仅招募到55名符合招募标准的COPD患者,耗时九个月。由于没有足够的大数据,所以本次不尝试深度学习技术,但对所使用的机器学习技术有信心,未来收集更多数据后会考虑深度学习技术。
2. 数据收集
2.1 招募COPD患者
2019年春夏,与佛罗里达州坦帕市中心的坦帕综合医院的呼吸治疗师合作,确定了55名(34名女性和21名男性)临床诊断为COPD的患者。每位受试者需签署机构审查委员会(IRB)批准的同意书,表示愿意参与研究。此外,受试者还需提供人口统计学信息(如年龄、性别、婚姻状况等),并完成COPD ABC和莱斯特咳嗽问卷。COPD ABC问卷用于衡量COPD的负担,莱斯特咳嗽问卷用于评估咳嗽对生活各方面的影响。
信息类型 | 详情 |
---|---|
患者数量 | 55(34女,21男) |
需签署文件 |