评估吸入器对慢性阻塞性肺疾病(COPD)患者的使用效果及智能导航解决方案
机器学习算法在COPD咳嗽和呼吸症状分类中的比较
在对COPD患者咳嗽和呼吸症状的分类研究中,使用了几种流行的机器学习方法,包括k - 最近邻(k - Nearest Neighbors)、随机森林(Random Forests)、逻辑回归(Logistic Regression)和多层感知器(Multilayer Perceptron),并与支持向量机(Support Vector Machine,SVM)进行了比较。
从分类结果来看,SVM在大多数指标上表现最佳。这是因为SVM在二元分类问题上表现出色,并且对于线性可分的数据,如本次研究的数据,效果良好。以下是不同算法在咳嗽和呼吸分类中的具体表现:
基于10 - 折交叉验证的咳嗽分类结果
算法 | 准确率 | 精确率 | 召回率 | 灵敏度 | 特异度 | F1 - 分数 |
---|---|---|---|---|---|---|
支持向量机 | 79.00% | 81.00% | 81.00% | 84.52% | 77.61% | 81.00% |
k - 最近邻 | 77.0 |