智能矿山与电网负载分析的创新算法应用
在当今科技飞速发展的时代,智能矿山和电力系统领域面临着数据处理和分析的巨大挑战。一方面,智能矿山中工人轨迹产生的海量定位数据需要高效处理;另一方面,电力系统中电力负载的聚类分析对于优化调度和系统平衡至关重要。本文将介绍两种创新算法,分别解决这两个领域的关键问题。
智能矿山:基于边缘计算的关键位置发现算法
随着智能矿山的发展,工人轨迹能够被精确跟踪,产生了大量的定位数据。然而,如何从海量数据中快速找到有用信息成为当前的重要问题。为此,提出了一种适用于地下边缘计算系统的关键位置发现(KLD)算法。
算法背景与优势
目前,煤矿及周边区域部署了多种定位设备,如射频识别、ZigBee、WiFi、蓝牙和UWB等,地下定位站可以收集并向地面服务器传输大量定位数据。但将数据传输到服务器会耗费大量时间,导致信息处理延迟,无法实时观察地下人员的移动和安全状态。
KLD算法结合了边缘计算的优势,能够在边缘侧快速过滤有用信息,找到关键位置。该算法首先根据矿工的工作信息对相同类型工作的轨迹进行分类,使轨迹数据更符合实际情况。然后,通过重建轨迹数据,根据拐点和停留点筛选出地下人员轨迹的关键位置。与其他算法相比,KLD算法可减少1/4的定位数据,去除冗余数据。
算法流程与实现步骤
KLD算法的流程图如下:
graph TD;
A[根据工作类型分类轨迹] --> B[判断是否为拐点];
B -- 是 --> C[加入关键序列];
B -- 否 --> D[判断是否