16、基于快速动态时间规整的改进谱聚类算法研究

基于快速动态时间规整的改进谱聚类算法研究

在电力领域,通过提取用户的消费习惯和模式,准确把握用电规律,进而设计更有效的电价来调节居民用电需求至关重要。本文围绕电力时间序列聚类分析展开,介绍了相关的相似性度量方法、聚类算法,并通过实验验证算法的有效性。

1. 模型构建

电力需求的时间序列是消费者行为的关键信息源。目前虽有学者研究大量电力用户的负荷模式,但关于时间序列计算的研究较少。因此,改进传统聚类技术、优化聚类数量、提高聚类质量和时间序列的相似性成为重要课题。

1.1 相似性度量

改进电力时间序列聚类分析的核心是相似性度量,它用于构建两条电力时间序列曲线之间的相似性矩阵。为研究相似性度量在电力时间序列聚类分析中的作用,采用欧几里得距离、动态时间规整算法(DTW)和快速动态时间规整算法(Fast - DTW)作为相似性度量方法,并对最终聚类结果进行合理分析和比较。
- 欧几里得距离(Euclidean Distance) :对于长度分别为$|U|$和$|V|$的两条电力时间序列曲线$U = {U_1, U_2, \ldots, U_{|U|}}$和$V = {V_1, V_2, \ldots, V_{|V|}}$,欧几里得距离要求样本电力时间序列曲线长度相等,即$|U| = |V|$。在$n$维空间中,其距离公式为:
[ED(U, V) = \sqrt{\sum_{i = 1}^{n}(u_i - v_i)^2}]
欧几里得距离是最常用的距离测量方法,它测量两条电力序列曲线之间的绝对距离,但只能测量相同长度的时间序列。实际发电过程中电力负荷产生的电力时间序列曲线是无序的,因此欧几里得距离难以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值