基于测试上下文的植物识别移动应用的变形测试
1. 研究背景与图像采集
在植物识别应用的测试中,为了全面评估应用在不同场景下的性能,需要采集多种角度和处理后的植物图像。对于角度相关测试(MR-angle),有一位参与者从七个不同角度拍摄各种植物。这七个不同角度是通过智能手机平面与植物对象的夹角来定义的,具体包括 45 度、75 度、180 度以及四个不同的 90 度拍摄侧面。在实验里,将 45 度角拍摄的图像作为原始图像。同时,还会对原始植物图像进行背景变换等操作,得到对应的后续图像。
2. 案例研究内容
2.1 数据集
使用来自 iNaturalist 2018 竞赛的数据集,这是 CVPR 上 FGVC5 研讨会的一部分。iNaturalist 是一款可识别植物和动物的对象识别应用。数据集中共有 2917 种植物,包含 118800 张训练图像和 8751 张验证图像。从中随机选取 200 张验证图像作为原始图像,通过对原始图像进行图像变换以及拍摄现实世界的植物,总共生成了 8400 张后续图像。
2.2 待测试的植物识别应用
从 Google Play 商店选取了三款基于 AI 的植物识别移动应用作为测试对象,它们均采用先进的 AI 算法,并使用大规模植物图像进行训练:
- PlantSnap :在 Google Play 商店的平均评分为 3.7,拥有超过 625000 种植物、花卉和蘑菇的数据库,在 200 多个国家被超过 3500 万植物爱好者广泛使用,为每张植物图像最多提供 10 种可能的识别结果。
- PlantNet