机器学习算法:原理、应用与选择指南
1. 机器学习算法选择的关键步骤
在选择机器学习算法时,有几个关键步骤需要遵循,以确保所选算法能够满足业务或项目的需求。
1.1 交叉验证
交叉验证是一种评估模型性能的重要方法。它通过将数据集分成多个子集,每次使用其中一个子集作为验证集,其余子集作为训练集,重复多次训练和验证过程,最后选择性能最佳的模型。交叉验证可以帮助检测过拟合问题,并且是评估预测和预报模型的最佳方法之一。不过,如果使用大量数据,交叉验证可能会运行很长时间,因此建议在模型构建和测试的初始阶段使用。
1.2 数据研究与净化
研究模型和算法在类似情况下的历史性能是有帮助的。机器学习算法的性能取决于数据的质量,因此,不恰当的数据收集和清理方法会对构建良好的预测性、通用性机器学习模型的能力产生负面影响。而经过仔细研究的数据与自动化工具相结合,可以提供出色的见解。数据清理有助于识别与记录、特征、值和采样相关的数据质量问题。
1.3 工具选择与资源考量
选择实现算法的工具是非常重要的一步。在为特定项目选择算法之前,需要考虑实现的难易程度、合适人才的可用性以及基础设施/资源等因素。例如,算法处理的数据越多,其准确性、效率和有效性就越高,因此选择能够处理大量数据集的工具成为最关键的方面。但如果没有合适的人才使用该工具,那么该工具实际上就没有用处。
1.4 确定合适的目标和业务价值
理解数据中的隐藏特征,通过创建新特征和消除无关特征来改进它们,对可预测性有很大影响。机器学习算法和方法旨在处理原始数据,并将其转换为丰富的特征空间,以便公司能够有效地利用这些特征实