28、Docker容器的命名空间与安全机制深度解析

Docker容器的命名空间与安全机制深度解析

1. 自定义Cgroup与容器关联

可以在Docker外部创建自定义的Cgroup,然后使用 docker container create 命令的 --cgroup-parent 参数将新容器附加到该Cgroup。一些调度器(如Kubernetes Pod)也会使用此机制在同一个Cgroup中运行多个容器。

2. 命名空间概述

在每个容器内部,尽管与系统上的其他进程共享内核,但容器拥有看似独有的文件系统、网络接口、磁盘等资源。这种隔离效果通过Linux命名空间实现,命名空间将传统的全局资源转换为容器独有的版本。

命名空间不像Cgroup那样容易在文件系统中探索,但大部分信息可在 /proc/*/ns/* /proc/*/task/*/ns/* 目录下找到。在较新的Linux版本中, lsns 命令也很有用。

默认情况下,容器在多个资源上都有各自的命名空间,包括挂载、UTS、IPC、PID、网络、用户命名空间,以及部分实现的时间命名空间。下面详细介绍这些命名空间的作用:
- 挂载命名空间 :主要用于让容器拥有独立的文件系统,类似于 chroot jail ,但更强大,甚至挂载和卸载系统调用也被命名空间化。使用 docker container exec nsenter 进入容器时,看到的文件系统根目录

《概率论数理统计》是理工科大学中的一门重要基础课程,它结合了概率论的基本理论统计学的方法,用于分析和处理随机现象。第二版的完整版多媒体教学系统旨在通过丰富的教学资源和互动体验,帮助学生深入理解和掌握这门学科的核心概念。 一、概率论基础 概率论是研究随机事件及其规律性的数学理论,主要包括以下几个关键概念: 1. 随机试验:概率论的研究对象,如掷骰子、抽卡等。 2. 样本空间:所有可能结果的集合。 3. 事件:样本空间的子集,代表某种特定的结果。 4. 概率:事件发生的可能性,通常介于0和1之间,表示为P(A)。 5. 条件概率:在已知某个事件发生的情况下,另一个事件发生的概率。 6. 乘法法则和加法法则:用于计算两个独立或不独立事件的概率。 二、概率分布 1. 离散概率分布:如二项分布、泊松分布、几何分布、超几何分布等,用于描述离散随机变量的分布情况。 2. 连续概率分布:如均匀分布、正态分布、指数分布等,适用于连续随机变量。 三、统计学基础 1. 参数估计:通过样本数据估计总体参数,如均值、方差等。 2. 抽样分布:统计量在多次重复抽样下的分布情况。 3. 点估计和区间估计:给出参数的一个估计值或一个估计范围。 4. 假设检验:检验关于总体参数的假设是否成立,如t检验、卡方检验、F检验等。 5. 回归分析:研究两个或多个变量间的关系,预测一个变量基于其他变量的值。 四、数理统计方法 1. 最大似然估计:寻找使样本数据出现概率最大的参数估计方法。 2. 矩估计:通过总体矩样本矩的关系来估计参数。 3. 正态分布的中心极限定理:大量独立随机变量的和近似服从正态分布,即使这些变量本身非正态。 4. 协方差和相关系数:衡量两个随机变量之间线性关系的强度和方向。 5. 方差分析(ANOVA):比较多个组别间的均值差异。 五、多元统计分析 1. 多元正态分布:多维空间中的正态分布,常用于多元线性回归。 2. 判别分析:根据已知分类的样本数据,建立判别函数,对新数据进行分类。 3. 聚类分析:将相似数据分组,揭示数据内在结构。 4. 主成分分析(PCA):降低数据维度,提取主要特征。 六、多媒体教学系统 该教学系统可能包含以下组成部分: 1. 视频讲座:专家讲解理论和例题,直观展示概念。 2. 动画演示:动态模拟随机过程,帮助理解概率模型。 3. 交互式练习:提供习题和答案,实时反馈学习效果。 4. 实验教程:设计数学实验,让学生亲手操作,加深理解。 5. 电子教材:包含文字、图表、案例等丰富内容,便于自主学习。 通过这个多媒体教学系统,学生不仅可以学习到概率论数理统计的理论知识,还能通过实践应用和互动学习,提升解决实际问题的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值