银行客户流失预警(三)| GBDT的应用

本文介绍了决策树的基础知识,包括其工作原理、优缺点,并详细讲解了GBDT(Gradient Boosting Decision Tree)算法,阐述了GBDT如何通过迭代优化残差来提升预测性能。此外,还提到了GBDT的重要参数设置及其在银行客户流失预警中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要介绍GBDT之前,先介绍一个基础成员,决策树。

什么是决策树?

决策树是最简单的机器学习算法,它易于实现,可解释性强,完全符合人类的直观思维,有着广泛的应用。其可作为分类算法,也可用于回归模型。

从名字可知,这是一棵树,它是基于特征构建一颗层层推理的树,主要由根节点,内部结构和叶子节点组成。
 根节点:包含样本的全集
 内部节点点:对应特征属性测试
 叶节点:代表决策的结果
在这里插入图片描述
实际预测时,在内部节点使用某一属性值判断,根据判断结果决定进入哪一个分支,直到达到叶子节点,得到分类结果。

决策树学习的三个步骤

在这里插入图片描述
1. 特征选择
特征选择决定了首先使用哪些特征做判断,整个决策过程使用哪些特征做判断。
在训练数据集中,每个样本的属性可能有很多个,不同属性的作用有大有小。因而特征选择的作用就是筛选出跟分类结果相关性较高的特征,也就是分类能力较强的特征。

特征选择常用的基准是:信息增益

2. 决策树生成
选择好特征后,就从根节点出发,对节点计算所有特征的信息增

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值