单通道深度图转real类型的xyz三通道

本文探讨了在图像处理中,Halcon与OpenCV在像素遍历和赋值操作上的性能差异。Halcon擅长算法开发,但在像素级操作上效率较低,而OpenCV以其高效的速度处理CV_32FC3和CV_64FC3类型的图像。通过实例展示了如何用OpenCV快速转换深度图为XYZ三通道并保存为bmp格式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

halcon部分:

*定义三维图的x、y的分辨率精度
xResolution:=0.04
yResolution:=0.04
*将深度图转为real类型三通道代表X、Y、Z的深度图
read_image (Image, 'E:/SMT电容虚焊测高/12-3测试图/12-03-15-34-58-155.tif')
get_image_size (Image, Width, Height)
*生成一副存real类型x坐标的单通道图
gen_image_const (Image1, 'real', Width, Height)
*生成一副存real类型y坐标的单通道图
gen_image_const (Image2, 'real', Width, Height)
*halcon 遍历图像的方式,针对单一像素进行操作
*不再是opencv专属
gen_rectangle1 (Rectangle, 0, 0, Height-1, Width-1)
get_region_points (Rectangle, Rows, Columns)
for Index := 0 to |Rows|-1 by 1
        set_grayval (Image1, Rows[Index], Columns[Index], Rows[Index]*xResolution)
        set_grayval (Image1, Rows[Index], Columns[Index], Rows[Index]*xResolution)
endfor

本来通过halcon来做,奈何halcon对像素操作太慢。改成opencv处理。

opencv部分:

处理根据.at方法进行处理,处理速度很快

通过

vector<Mat> ReadImg(cv::String path)

{        

        vector<cv::String> fn;
        glob(path, fn, false);
        vector<Mat> images;
        size_t count = fn.size(); //number of png files in images folder
        for (size_t i = 0; i < count; i++)
        {
         images.emplace_back(cv::imread(fn[i],2));
        }
         return images;
}

读取文件夹的图像。

通过

void ImageConvert()
{
    float xResolution = 0.04;
    float yResolution = 0.04;
    cv::String path = "E:\\Halcon程度代码\\图像处理DEMO\\深度图转real类型xyz三通道\\x64\\Debug\\image\\*.tif";
    vector<Mat> Img_Vec = ReadImage(path);
    for (int i = 0; i < Img_Vec.size(); i++)
    {
        Mat src = Img_Vec[i];
        Size sizeImg = src.size();
        Mat tempImg(sizeImg, CV_32FC3);
        for (int j = 0; j < src.rows; j++)
        {
            for (int k = 0; k < src.cols; k++)
            {
                tempImg.at<Vec3f>(j, k)[0] = xResolution*j;
                tempImg.at<Vec3f>(j, k)[1] = yResolution*i;
                tempImg.at<Vec3f>(j, k)[2] = src.at<float>(j, k);
            }
        }
        imwrite(".\\image\\Img_" + to_string(i) + ".bmp", tempImg);
    }
}

开始图像转换。

总结:针对算法的开发,halcon优势较为明显,但遇到像素遍历赋值的问题,opencv效率优势十分明显。

图像类型是CV_32FC3类型时,配合Vec3f使用。

图像类型是CV_64FC3类型时,配合Vec3d使用。

<think>好的,我现在需要回答用户关于Halcon生成三通道图像的算子的问题。首先,我应该回想一下Halcon中处理图像的基本知识。Halcon主要用于机器视觉,处理图像的时候常常会涉及单通道和多通道图像。 用户问的是生成三通道图像的算子。我记得Halcon中有一些算子可以将单通道图像合并成多通道图像,比如compose3,可能还有其他方法。另外,可能需要考虑如何从多个单通道图像组合成三通道,例如RGB图像。 接下来,我需要确认compose3的具体用法。compose3应该是将三个单通道图像合并成一个三通道的图像,每个输入图像对应一个通道。例如,将三个灰度图像分别作为R、G、B通道,合并成一个彩色图像。 此外,Halcon中还有其他生成多通道图像的方法吗?比如使用gen_image3,可能和compose3类似?或者可能通过其他方式创建,比如直接生成三通道的图像数据? 可能还需要提到如何将不同的颜色空间换,例如将HSV换为RGB,但这可能属于颜色空间换的范畴,而不是生成三通道图像的直接方法。不过,用户的问题更关注生成三通道的算子,所以重点应放在图像合成上。 另外,可能需要举例说明如何使用这些算子。例如,读取三个单通道图像,然后使用compose3将它们合并成一个三通道的RGB图像。或者使用gen_image3直接创建。 需要确保这些算子的名称和用法正确,可能需要查阅Halcon的文档或快速参考来确认。例如,compose3的参数顺序是否是按R、G、B排列的,或者是否按其他顺序?正确的参数顺序很重要,否则会导致颜色通道错位。 另外,用户可能想知道除了compose3之外是否还有其他相关算子,例如compose4处理四通道,或者通道分解的算子如decompose3。虽然用户的问题是关于生成的,但可能简要提及相关的分解算子作为补充信息。 还需要注意Halcon中图像对象的类型三通道图像通常是RGB图像,但也可能代表其他类型三通道数据,比如HSV,但通常默认是RGB。因此,在合成时需要确保输入的单通道图像是正确的顺序和类型。 总结一下,我需要介绍的算子可能包括compose3和gen_image3,解释它们的用法,参数,以及示例代码片段。同时,可能需要提到其他相关算子或方法,以全面回答用户的问题。</think>在Halcon中,生成三通道图像(通常指RGB彩色图像)的主要算子是 **`compose3`**。以下是详细介绍及使用示例: --- ### **1. `compose3` 算子** **功能**: 将三个单通道图像合并成一个三通道图像(例如RGB图像)。每个输入的单通道图像分别对应输出图像的红(Red)、绿(Green)、蓝(Blue)通道。 **语法**: ```halcon compose3(Image1, Image2, Image3 : MultiChannelImage : : ) ``` **参数说明**: - `Image1`:输入的第一个单通道图像(对应红色通道)。 - `Image2`:输入的第二个单通道图像(对应绿色通道)。 - `Image3`:输入的第三个单通道图像(对应蓝色通道)。 - `MultiChannelImage`:输出的三通道图像。 **使用示例**: ```halcon * 读取三个单通道图像(例如分别代表R、G、B分量) read_image(RedImage, 'red_channel.png') read_image(GreenImage, 'green_channel.png') read_image(BlueImage, 'blue_channel.png') * 合并成三通道RGB图像 compose3(RedImage, GreenImage, BlueImage, RGBImage) ``` --- ### **2. 其他相关方法** #### **(a) `gen_image3` 算子** **功能**: 直接通过像素数组生成三通道图像,适用于从内存数据创建图像。 **语法**: ```halcon gen_image3(MultiChannelImage : : Type, Width, Height, PixelPointer1, PixelPointer2, PixelPointer3 : ) ``` **参数说明**: - `Type`:像素类型(如 'byte', 'uint2', 'real' 等)。 - `Width, Height`:图像的宽度和高度。 - `PixelPointer1/2/3`:三个通道的像素数据指针。 **使用场景**: 适用于从程序内存中直接生成图像,例如从OpenCV或其他库导入数据。 --- #### **(b) 换颜色空间** 若需从其他颜色空间(如HSV、YUV)生成三通道图像,可先创建单通道分量,再合并: ```halcon * 假设已有H、S、V三个单通道图像 compose3(HImage, SImage, VImage, HSVImage) * 将HSV换为RGB trans_from_rgb(HSVImage, RGBImage, 'hsv', 'rgb') ``` --- ### **3. 注意事项** 1. **通道顺序**: `compose3` 的参数顺序必须为 **R → G → B**,否则会导致颜色错乱。 2. **图像尺寸一致性**: 输入的所有单通道图像必须具有相同的尺寸(宽度和高度)。 3. **数据类型**: 输入图像的数据类型需一致(如均为 `byte` 或 `uint2`)。 --- ### **4. 辅助算子** - **分解三通道图像**: 使用 `decompose3` 可将三通道图像拆分为三个单通道图像。 ```halcon decompose3(RGBImage, RImage, GImage, BImage) ``` - **多通道操作**: 使用 `channels_to_image` 或 `image_to_channels` 处理更多通道的图像。 --- 通过上述方法,您可以灵活地在Halcon中生成和处理三通道图像,适用于颜色分析、图像融合等机器视觉任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

beyond951

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值