Keras深度学习之分层概念

本文介绍了如何在Keras中搭建多层感知神经网络和卷积神经网络模型,包括Dense层的使用、模型训练、数据增强以及循环神经网络中的LSTM层应用。强调了数据复现性、卷积层的过滤器和最大池化层的作用,以及在音乐序列预测中LSTM模型的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.1 多层感知层简介

3.1.1 链接输入、输出的Dense层

Dense(8,input_dim=4,activation='relu')

  • 第一个参数:输出神经元的个数

  • input_dim:输入神经元的个数

  • activation:激活函数

    • linear:默认值,输入神经元与权重计算得到的结果值

    • relu:主要用于隐藏层。rectifier函数

    • sigmoid:sigmoid函数,主要用于二元分类问题的输出层中

    • softmax:softmax函数,主要用于多分类问题的输出层中

Dense层不受输入神经元个数的限制,可自由设定输出神经元的个数

3.2搭建多层感知神经网络模型

深度学习为什么需要随机种子

基于随机种子来实现代码中的随机方法,能够 保证多次运行此段代码能够得到完全一样的结果,即保证结果的 可复现性,这样 别人跑你的代码的时候也能够很好地复现出你的结果。

3.2.1 设置模型训练过程

model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])

  • loss:用于评价权重设定的代价函数

  • optimizer:搜索最优权重的优化算法

  • metrics:衡量指标

3.2.2 训练函数

  • 第一个参数:输入变量

  • 第二个参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bgbgssh1314

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值