【论文阅读】保守和适应性惩罚+基于模型的安全强化学习

文章提出了保守和适应性惩罚(CAP)框架,用于基于模型的安全强化学习,旨在处理模型不确定性导致的约束违反问题。CAP通过考虑模型的不确定性来增强预测成本,确保在训练期间的安全性,并通过自适应地调整成本惩罚项来优化策略。实验表明,CAP在状态和图像环境中提高了安全RL方法的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【论文阅读】保守和适应性惩罚+基于模型的安全强化学习

Conservative and Adaptive Penalty for Model-Based Safe Reinforcement Learning

这是今年发表在AAAI 2022关于安全强化学习的一篇文章。基于模型的RL算法使用来自自学习模型的模拟样本来合成遵守约束的策略,减少RL在现实世界不安全的行为,例如超速,超过机器所能达到的最大转矩。但是,不完美的建模还是会产生违规动作,即使动作被预测能满足约束条件。

因此,本文中提出了一种基于模型的安全RL框架(CAP),通过捕获模型的不确定性并自适应地利用它来平衡汇报和成本目标,从而解释潜在的建模错误。主要分为两个步骤:

  1. 使用基于不确定的惩罚来提高预测的成本,这保证了保守性成本约束条件,使其能适应真实的环境,在RL的训练阶段中间步骤的安全性;
  2. 考虑到固定惩罚项适应性较弱(过高,RL只能被迫找到次优策略;过低,可能对成本的约束力不强,造成违规动作),使用来自环境的真实成本回报来自适应地调节成本惩罚项。

最后,在基于状态和图像的环境中,评价了这种基于惩罚的保守自适应(conservative and adaptive cost penalty,CAP)安全RL方法。

具体方法步骤

首先,基于模型的安全RL学习框架
建模为有限制的马尔可夫决策过程(CMDP),其转化为找出存在约束条件的最佳决策的优化问题:
Image
其中,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值