引言
在现代数据驱动的世界中,从海量的结构化数据中快速获取信息是至关重要的。本文将探讨如何使用大型语言模型(LLM)在SQL数据库上构建一个问答系统。我们将分别讨论如何使用链(Chains)和智能体(Agents)来实现这样的系统,以及面临的挑战和解决方案。
主要内容
使用链(Chains)构建问答系统
在链的实现中,我们可以创建一个简单的流程,将用户的问题转换为SQL查询,执行该查询并使用结果返回答案。通常,步骤如下:
- 将问题转换为SQL查询。
- 执行SQL查询。
- 使用查询结果回答原始问题。
from langchain.chains import create_sql_query_chain
from langchain_community.utilities import SQLDatabase
from langchain_openai import ChatOpenAI
# 初始化数据库和语言模型
db = SQLDatabase.from_uri("sqlite:///Chinook.db")
llm = ChatOpenAI(model="gpt-4o-mini")
chain = create_sql_query_chain(llm, db)
# 示例:查询员工数量
response = chain.invoke({"question": "How many employees are there"})
db.run(response)
使用智能体(Agents)构建问答系统
智能体比链更灵活,可以根据需要多次查询数据库,以回答用户的问题。其主要优势在于:
- 能够根据数据库的结构和内容回答问题。
- 可以从错误中恢复,重新生成查询。
- 根据需要查询多次以获取完整答案。
from langchain_community.agent_toolkits import SQLDatabaseToolkit
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
tools = toolkit.get_tools()
# 创建智能体执行器
from langchain_core.messages import SystemMessage
from langgraph.prebuilt import create_react_agent
system_message = SystemMessage(content="""Your structured instructions here""")
agent_executor = create_react_agent(llm, tools, messages_modifier=system_message)
# 示例:查询哪个国家的客户花费最多
for s in agent_executor.stream(
{"messages": [SystemMessage(content="Which country's customers spent the most?")]}
):
print(s)
常见问题和解决方案
SQL注入和安全
由于需要执行程序生成的SQL查询,SQL注入风险是一个主要的安全问题。开发者应限制数据库连接权限,并考虑在查询执行前增加人工审核步骤。
查询复杂性
对于需要多个查询的问题,智能体能更好地处理复杂的查询方案。对于简单的需求,链方式更加高效。
总结和进一步学习资源
构建一个基于SQL数据的问答系统需要考虑安全性、查询复杂性等挑战。使用链和智能体各有优势,选择合适的实现方式取决于具体需求。
进一步学习可以参考以下资源:
参考资料
- LangChain 官方文档
- OpenAI API 官方文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—