
算法
文章平均质量分 73
lrwin_bian
图像算法工程师
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
优秀文章总结
三维点云配准 – ICP 算法原理及推导Reference:https://zhuanlan.zhihu.com/p/104735380YOLO:YOLOv1,YOLOv2,YOLOv3,TinyYOLO,YOLOv4,YOLOv5详解Reference:https://zhuanlan.zhihu.com/p/136382095loss总结Reference:https://zhuanlan.zhihu.com/p/75495999Transformer系列Reference:https:/原创 2021-05-28 15:18:35 · 264 阅读 · 0 评论 -
Hard Mining方法总结
一、相关概念对于分类来说:正样本:正确分类出的类别对应的样本负样本:不是正样本的所有样本难分正样本(hard positives):错分成负样本的正样本,也可以是训练过程中损失最高的正样本难分负样本(hard negatives):错分成正样本的负样本,也可以是训练过程中损失最高的负样本易分正样本(easy positive):容易正确分类的正样本,该类的概率最高。也可以是训练过程中损失最低的正样本易分负样本(easy negatives):容易正确分类的负样本,该类的概率最高。也可以是训练原创 2021-05-27 18:09:22 · 1180 阅读 · 0 评论 -
FOTS字符检测+识别代码配置
论文:FOTS: Fast Oriented Text Spotting with a Unified Networkcode: https://github.com/jiangxiluning/FOTS.PyTorch一. 版本依赖:python = 3.6.13pytorch = 0.4.0(1.0.0)gcc = 7.3.0二. 配置过程:创建虚拟conda环境python=3.6git clone 代码库conda 安装pytorch=0.4.0编译build.sh文件编原创 2021-05-25 16:54:50 · 721 阅读 · 2 评论 -
MNN学习
MNN简介MNN是一个轻量级的深度神经网络推理引擎,在端侧加载深度神经网络模型进行推理预测MNN应用流程训练在开源框架上基于训练数据训练自己的模型,如TensorFlow、Pytorch等转换将其他训练框架模型转换为MNN模型。MNN当前支持Tensorflow(Lite)、Caffe和ONNX的模型转换。支持的算子推理端侧加载MNN模型进行推理。端侧运行库的编译支持平台:ios、Android、Linux/macOS/Ubuntu 、Windows;同时提供有API接口文档应用实例原创 2021-02-28 15:47:59 · 2016 阅读 · 0 评论 -
pytorch模型定点化记录
定点化的意义深度学习模型往端侧迁移时通常受限于芯片的计算能力,PC端训练的模型是浮点型,而芯片端是整型计算,此时就需要做模型定点化定点化流程第一步:模型转ONNX第二步:ONNX打包量化第三步:PC和芯片端对齐具体如下:1. 模型转ONNX通常芯片厂商会有对应的文档指引,主要关注:支持的最大flops,支持的算子,layer类型,量化的API。1.1 支持的最大flops根据芯片所支持的flops选择合适的移动端模型,如Mobilenet,shuffleNetv2等。flops即加乘运算原创 2021-01-07 12:35:34 · 1243 阅读 · 0 评论 -
pytorch 模型转onnx提示错误:only one element tensors can be converted to Python scalars
pytorch 模型转onnx提示错误:only one element tensors can be converted to Python scalars版本:pytorch1.1.0原因:pytorch版本bug解决方法:升级版本参考链接:github issue 地址原创 2020-11-11 16:27:52 · 353 阅读 · 0 评论 -
虹软人脸开放平台C++SDK+windows10配置总结
SDK版本:配置环境:win10 64位 +visual studio2015(2019也可)PS:前期尝试用VScode配置没配置成功,由于SDK有UI界面展示,需要MFC库支持,在用VScode配置时一直卡在MFC库上面,查阅微软官方论坛好像说VScode一般用来编辑code,不太支持开发,总之没尝试成功,建议小伙伴直接用visual studio 避免怕坑;同时官方建议版本为visual studio2013+,这里我只尝试了2015和2019都可以第一步:注册虹软视觉平台,下载所需的原创 2020-09-01 13:08:26 · 1900 阅读 · 9 评论 -
关于resnet网络输入图片尺寸任意大小的问题
最近在做图像分类时查阅了一些相关资料发现输入的图片大小并非是固定大小224*224,因此很疑惑,查阅了一些资料发现了以下解答:版本框架:pytorch,模型加载来自torchvision对应链接为:https://discuss.pytorch.org/t/how-can-torchvison-models-deal-with-image-whose-size-is-not-224-224/51077希望对疑惑的小伙伴有所帮助...原创 2020-08-17 14:47:39 · 15690 阅读 · 0 评论 -
k-近邻(KNN)算法
一.K-近邻算法(KNN)概述最简单最初级的分类器是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性完全匹配时,便可以对其进行分类。但是怎么可能所有测试对象都会找到与之完全匹配的训练对象呢,其次就是存在一个测试对象的同时与多个训练对象匹配,导致一个训练对象被分配到了多个类的问题,基于这些问题呢,就产生了KNN。KNN是通过测量不同特征值之间的距离进行分类。它的思转载 2017-08-17 08:45:20 · 534 阅读 · 0 评论 -
Bag of words模型简介
Bag of words 模型是信息检索领域常用的文档表示方法。在信息检索中,BOW模型假定对于一个文档,忽略它的单词顺序和语法、句法等要素,将其仅仅看作是若干个词汇的集合,文档中每个单词的出现都是独立的,不依赖于其它单词是否出现。也就是说,文档中任意一个位置出现的任何单词,都不受该文档语意影响而独立选择的。例如有如下两个文档:1:Bob likes to play basketball,Ji转载 2017-08-16 15:10:51 · 484 阅读 · 0 评论 -
图像处理中距离度量方法总结
1.Euclidean DistanceEuclidean Distance(欧氏距离)是一种常用的度量方式,是点和点之间坐标的均方根。通常情况下人们所说到的距离,指的就是欧式距离,它的定义如下:2.Manhattan DistanceManhattan Distance(曼哈顿距离)也称为街区距离,表示对点与点之间在不同维度上的绝对距离的叠加,它的定义如下:3.C原创 2017-08-16 11:03:24 · 19433 阅读 · 3 评论 -
K均值算法
K均值属于比较简单的聚类问题,所谓的聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D分成K个子集,要求每个子集内部的元素之间的相异度尽可能的小,而不同子集的元素相异度尽可能的大。其中每一个子集叫做一个簇。传统K均值的计算过程:1.从D中随机取K个元素,作为K个簇的各自的中心。2.计算剩下的元素到各个中心点的相异度(一般按照欧式距离的远近),将这些元素归原创 2017-08-16 09:20:54 · 2040 阅读 · 0 评论