
PyTorch实现深度学习
AI炮灰
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
python 调用不同文件夹下的 py文件
网上找了好多帖子,都没有解决问题,最后把自己可行的方案贴上来。defor_filter文件夹下的defor_filter.py 调用 noiseIndicator文件夹下的EPI.py 1)设置根目录为Sources root右击根目录,mark dirctory as(将目录标记为) -- Sources Root(源根);相当于在系统路径中加入根目录,当import时,可以检索根目录中内容;类似于sys.path.append(path)下图是我设置好之后的显示。 2)建立__init__.py_转载 2022-06-24 16:29:21 · 4960 阅读 · 3 评论 -
深度学习机器学习各种数据集汇总地址
(4条消息) 免费数据集下载_灬点点的博客-CSDN博客_数据集下载https://xhcom.blog.csdn.net/article/details/79487335转载 2022-06-24 17:56:17 · 323 阅读 · 0 评论 -
基于PyTorch利用CNN对自己的数据集进行分类
main.py文件#-*- coding: utf-8 -*-import torchfrom torch.utils.data import Dataset, DataLoaderimport torchvisionimport torchvision.transforms as transformsfrom pathlib import Pathfrom model import CNN_MODELimport torch.nn as nnimport torch.optim as原创 2022-05-26 22:48:26 · 1723 阅读 · 1 评论 -
Pytorch中自制数据集进行Dataset重写
通过上一篇博文,我们可以获得一下文件的数据如下所示:所以自制数据集的流程如下:(1)生成csv或者txt文件见我上一篇博客:深度学习-制作自己的数据集_AI炮灰的博客-CSDN博客(2)重写Dataset(3)生成DataLoader()(4)迭代数据(2)(3)(4)步完整代码如下所示;import pandas as pdfrom torch.utils.data import Dataset, DataLoader, random_splitfrom torc原创 2022-05-25 13:32:18 · 662 阅读 · 0 评论 -
深度学习-制作自己的数据集
1.背景对于文件夹套子文件夹,子文件夹里有很多同一类别的图像,子文件夹表示里面图像的类别。这种结构的文件叫做图像层叠式即为imageFolder。如下所示:该文件夹下面有10个类别的子文件夹,如下:每个子文件夹下有许多图像,如下:2.开始制作数据集""" 对于一个文件夹下有多个文件夹,每个子文件夹都是子文件夹里图片的类别名,这种称谓图像层叠形式imageFolder。"""import osfrom torch.utils.data import ..原创 2022-05-25 00:27:57 · 6028 阅读 · 0 评论 -
基于PyTorch解析并实现LeNet-5模型
1.LeNet-5模型架构 LeNet-5模型共有7层,如下所示: 下面我们对每一层的结构进行解析:(1)第一层:卷积层 输入:原始的图片像素矩阵(长、宽、通道数),大小为32x32x1 参数:滤波器尺寸为5x5,深度为6,不使用全0补充步长为1 输出:特征图,大小为28x28x6 分析:由于没有使用全0补充,所以这一层的输出尺寸为32-5+1=28,深度为6,本卷积层一共有5x5x1x6+6=156...原创 2021-07-21 09:02:22 · 477 阅读 · 2 评论 -
基于PyTorch对卷积神经网络原理总结与实现
1.概述 在前一个博客中我们对于全连接神经网络做了一个实现。其中输入层有784个(28*28的图片)元素,四个隐藏层分别有400原创 2021-06-25 08:20:27 · 1540 阅读 · 0 评论 -
基于PyTorch利用全连接神经网络识别MNIST手写数字
from torchvision import datasets, transformsfrom torch import nn, optimfrom torch.utils.data import DataLoaderimport torchfrom torch.autograd import Variable# step1:定义超参数,并进行初始化batch_size = 64learn_rate = 0.001num_epoches = 10000# step2: 建立带有激励.原创 2021-06-10 21:45:54 · 503 阅读 · 0 评论 -
基于Pytorch全连接神经网络实现多分类
为了方便开发者应用,PyTorch专门开发了一个视觉工具包torchvision,主要包含以下三个部分: 1.model原创 2021-06-09 09:35:20 · 4358 阅读 · 0 评论 -
基于Pytorch实现逻辑回归
1.逻辑回归 线性回归表面上看是“回归问题”, shi原创 2021-06-08 14:50:18 · 340 阅读 · 0 评论 -
基于PyTorch实现一元线性回归模型
import torchfrom torch.autograd import Variableimport matplotlib.pyplot as pltimport numpy as npimport torch.nn as nnimport torch.optim as optim# step1:制造数据集x_train = np.array([[3.3],[4.4],[5.5],[6.71],[6.93],[4.168],[9.779],[6.182],[7.59],[2.167].原创 2021-06-06 15:06:13 · 350 阅读 · 0 评论