【经验记录贴】快速入门RAG博客推荐

在使用大模型去进行开发应用的时候,绕不开的话题是RAG,那么如何快速对RAG有一个认识呢?

了解一个新技术,我觉得可以两种方法结合:
1)实际去动手做一做 
2)阅读一些综述类的论文或者博客(了解整体框架)

最近看到一篇含金量非常高的综述类的博客,对于RAG整体构成各构成阶段课题技术手段行业实践案例,都有比较全面的介绍,能够让新手对RAG整体有一个概要性的了解。

mark一下,顺便推荐给大家:modular-rag-and-rag-flow-part1

PS:貌似需要翻墙,有两个部分part1(对RAG整体的介绍),part2(对现在的新趋势组装式RAG的介绍),part2的地址链接在part1中有。
 

资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 在 Android 应用开发中,开发一款仿 OPPO 手机计算器的应用是极具实践价值的任务,它融合了 UI 设计、事件处理以及数学逻辑等多方面的技术要点。当前的“最新版仿 OPPO 手机计算器--android.rar”压缩包中,提供了该计算器应用的源代码,这为开发者深入学习 Android 编程提供了宝贵的资源。 UI 设计是构建此类计算器应用的基石。OPPO 手机的计算器界面以清晰的布局和良好的用户交互体验著称,其中包括数字键、运算符键以及用于显示结果的区域等关键元素。开发者需借助 Android Studio 中的 XML 布局文件来定义这些界面元素,可选用 LinearLayout、GridLayout 或 ConstraintLayout 等布局管理器,并搭配 Button 控件来实现各个按键功能。同时,还需考虑不同分辨率屏幕和设备尺寸的适配问题,这通常涉及 Density Independent Pixel(dp)单位的应用以及 Android 尺寸资源的合理配置。 事件处理构成了计算器的核心功能。开发者要在每个按钮的点击事件中编写相应的处理代码,通常通过实现 OnClickListener 接口来完成。例如,当用户点击数字键时,相应的值会被添加到显示区域;点击运算符键时,则会保存当前操作数并设定运算类型。而对于等号(=)按钮,需要执行计算操作,这往往需要借助栈数据结构来存储操作数和运算符,并运用算法解析表达式以完成计算。 数学逻辑的实现则是计算器功能的关键体现。在 Android 应用中,开发者可以利用 Java 内置的 Math 类,或者自行设计算法来完成计算任务。基本的加减乘除运算可通过简单的算术操作实现,而像求幂、开方等复杂运算则需调用 Math 类的相关方法。此外
### 关于RAG框架的概述 RAG(Retrieval-Augmented Generation)是一种结合检索和生成模型的技术,旨在通过从外部知识库中提取相关信息来增强生成模型的表现。这种技术特别适用于需要实时访问最新数据的应用场景。 #### RAG框架的核心概念 RAG框架的主要特点是它能够动态地从大规模文档集合中检索相关内容,并将其作为上下文提供给生成模型。这种方法不仅提高了生成内容的相关性和准确性,还减少了对预训练语料库的依赖[^1]。 #### GitHub上的顶级RAG框架推荐 以下是当前在GitHub上备受关注的一些顶级RAG框架: 1. **Haystack by deepset-ai** - Haystack 是一个开源框架,专注于构建搜索引擎和问答系统。该框架支持多种索引方式以及灵活的管道设计,适合用于企业级应用中的复杂查询处理。 2. **LangChain** - LangChain 提供了一套工具链,帮助开发者快速搭建基于大语言模型的应用程序。其中包含了针对RAG的具体模块和支持不同类型的重排序算法(如 Cohere Rerank 和 BGE Reranker),可以显著提升检索质量[^2]。 #### 使用场景分析 RAG框架广泛应用于以下几个领域: - **客户服务聊天机器人**: 自动化回复客户咨询,确保信息准确无误。 - **法律文件解析**: 高效查找相关条款并自动生成摘要。 - **医疗健康顾问**: 结合权威医学资料为用户提供个性化建议。 #### 最佳实践分享 为了充分发挥RAG系统的潜力,在实际部署过程中需要注意以下几点: - 数据准备阶段应充分清洗和标注训练集; - 合理配置向量数据库参数以平衡速度与精度; - 定期更新知识源保持时效性; ```python from haystack import Pipeline, DocumentStore, Retriever, Generator # 初始化组件实例 document_store = DocumentStore() retriever = Retriever(document_store=document_store) generator = Generator() # 构建流水线 pipeline = Pipeline() pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"]) pipeline.add_node(component=generator, name="Generator", inputs=["Retriever"]) result = pipeline.run(query="What is the capital of France?") print(result['answers']) ``` 上述代码片段展示了如何利用 `haystack` 创建简单的RAG工作流。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值