
深度学习基础
莫愁-前路
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
conda换源和相关命令
换源清华源镜像 - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/原创 2021-07-06 15:52:16 · 1464 阅读 · 0 评论 -
一句话理解瓶颈结构
瓶颈结构是一种长得像瓶颈的一样,上面小(卷积核)下面大(卷积核)的网络结构(可参考ResNet中的瓶颈结构)。如下图所示:图中上面使用比较小的1x1的卷积核减少卷积核的通道数(1x1卷积核的作用见NIN网络),然后使用等于上层通道数的3x3的卷积核进行特征卷积,最后在使用1x1的卷积核提高通道数使其达到目标数量。这样做的效果等效于使用3x3x256的卷积核,但是这样的瓶颈设计不仅减少了参数量还加深的网络层数。...原创 2021-07-01 20:18:47 · 5046 阅读 · 2 评论 -
通俗理解分组卷积
目录顾名思义这样做有啥作用呢?参考顾名思义分组卷积(Group Convolution)顾名思义,在对特征图进行卷积的时候,首先对特征图分组再卷积。如下图所示:这样做有啥作用呢?减少参数量,分成G组,则该层的参数量减为原来的1/G。feature map尺寸为CiHW,常规卷积的参数量是Ci*H*W*Co;分G组的分组卷积参数量是(Ci/G)*H*W*(Co/G)*G=(Ci*H*W*Co)/G;可以自己举一个简单的例子试一试。分组卷积可以看做是对原来的特征图进行了一个dropout,有正原创 2021-07-01 19:38:07 · 4568 阅读 · 2 评论