论文阅读:pixelNeRF: Neural Radiance Fields from One or Few Images

文章提出了一种新的方法,称为pixelNeRF,它能从一或少量图像中构建神经辐射场。与NeRF不同,pixelNeRF利用与每个像素对齐的空间图像特征作为输入,通过全卷积图像编码器和MLP网络来适应图像空间特征。这种方法允许模型在不同视角之间共享知识,解决了单视角的几何歧义问题。当有多个输入视图时,模型能够更好地理解场景信息,提高重建质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中文标题:从一或少量图像中构建神经辐射场

提出问题

  • NeRF效果虽然惊艳,但是其需要大量环绕图像以及长时间的训练。

创新点

  • 与原始的NeRF网络不使用任何图像特征不同,pixelNeRF将与每个像素对齐的空间图像特征作为输入。
  • 也可以集合更多输入相关场景特征。

具体实现

图像约束神经辐射场

  • 为了克服NeRF不能在场景间分享Knowledge的缺陷,文章提出适应图像空间特征的NeRF。
  • 提出的模型包括两部分:一个全卷积图像编码器以及一个NeRF的MLP网络。

单图Pixel-NeRF

  • 首先对输入图像提取特征W=E(I)W=E(I)W=E(I).
    在这里插入图片描述

  • 然后将射线x投影回输入图像平面π(x)\pi(x)π(x), 然后通过插值查找对应特征W(π(x))W(\pi(x))W(π(x))

  • 最后将对应特征一起送入MLP。
    在这里插入图片描述

  • 如果查询视图方向与输入视图方向相似,则模型可以更直接地依赖于输入;如果它不同,则模型必须利用学习到的先验。

合并多个视图

  • 多个视角为场景提供了额外的信息,能够解决单视角下的几何歧义。文章提出的框架可以扩展到任意数量的输入图像。
  • 我们将一个视图方向为d的查询点x转换为每个输入视图i的坐标系:
    在这里插入图片描述
    在这里插入图片描述
  • ψ\psiψ 是平均池化操作。f=f1∘f2f = f_1 \circ f_2f=f1f2
    在这里插入图片描述

参考文献

[1] Yu A, Ye V, Tancik M, et al. pixelnerf: Neural radiance fields from one or few images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 4578-4587.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlueagleAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值