关于 Spark on Yarn 的资源分配与 Capacity Scheduler 的研究

资源调度永远是一个对立统一的问题,在一个限定的资源范围里,我们总是希望资源可以这样有效地分配:

  • 宏观上,整体的资源应该尽可能地被共享,这样才能提升资源利用率,节约成本
  • 局部上,每一个请求资源的主体有权对一定的资源拥有优先或独占的权利,以确保其作业可以按时完成,这在宏观上是要求对资源进行隔离

简单总结就是:宏观上要求共享,提升整体的资源利用率,局部上需要独占,确保作业及时可控地完成,这是一组相互冲突和矛盾的需求,只有调度策略具备一定的弹性,才能在这种相互冲突的体系获得一种均衡和利益最大化。

回到Yarn的资源调度上,Yarn提供了三种资源分配策略,分别是:Fifo Scheduler,Fair Scheduler和Capacity Scheduler,今天我们单独讨论一下Capacity Scheduler。

首先,我们要时刻记住:一个作业可以获得多少资源是受两个“因子”同时制约的:队列(Queue)和用户(User),一个作业一定是以某个用户的身份提交给某一个队列的,但是多个队列和多个用户下,资源的分配策略将决定这个作业最终可以获得多少资源。通常大家关注队列的状况多一些

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Laurence 

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值