Kohya_ss训练lora模型提示no display name and no $DISPLAY environment variable

当运行程序时遇到_Tkinter.TclError,通常是由于没有DISPLAY环境变量导致。此外,输出目录(Outputfolder)中的同名safetensors文件引发了警告。解决方法是删除Outputfolder下的同名safetensors文件,以消除弹框告警并解决环境不支持的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

_tkinter.TclError: no display name and no $DISPLAY environment variable

 

 "Output folder" 模型输出目录存在与当前输出同名文件,导致触发弹框告警,而现有环境不支持而报错

解决办法:删除Output folder下面的同名safetensors即可

<think>好的,用户想了解如何使用Kohya_ss训练SDXL的LoRA模型,需要教程、方法和参数设置。我需要先整理现有的引用信息,看看里面有没有相关的内容。引用1提到SDXL的训练LoRA教程,引用3是kohya训练LoRA的链接,引用4是启动kohya_ss的命令。看起来这些引用里有一些关键点。 首先,用户可能需要环境准备,比如安装kohya_ss,这部分引用4提到了启动命令,可能需要先安装并运行环境。然后数据准备方面,引用2提到了图像预处理,比如提高分辨率,这对训练LoRA很重要。引用3可能包含训练所需的标注文件,需要下载使用。 接下来,参数设置是关键。根据经验,LoRA训练参数包括学习率、epoch数、batch size等。可能需要结合SDXL的结构(引用1提到的)来调整参数,比如使用较低的学习率,防止过拟合。同时,SDXL可能需要特定的分辨率,比如1024x1024,所以预处理时要调整图片尺寸,如引用2所说。 另外,用户可能遇到的常见问题包括显存不足,这时候需要调整batch size或者使用梯度累积。还有,数据标注的质量影响模型效果,引用3提供的标注文件可能有用,需要指导用户正确准备标注。 最后,生成相关问题时要覆盖安装、数据处理、参数优化、调试和应用场景等方面,帮助用户全面理解。</think>以下是如何使用Kohya_ss训练SDXL的LoRA模型的完整指南,包含关键参数设置和操作步骤: ### 一、环境准备 1. 安装Kohya_ss训练框架 ```bash git clone https://github.com/kohya-ss/sd-scripts cd sd-scripts && pip install -r requirements.txt ``` 2. 通过GUI启动训练界面[^4] ```bash ./gui.sh --listen 127.0.0.1 --server_port 6006 ``` ### 二、数据准备 1. 图像预处理 - 使用SD的批量图像放大功能,将图片分辨率提升至$1024\times1024$以上[^2] - 推荐图像数量:$50-200$张同类风格/主题图片 - 文件结构: ``` /train_dataset /image img1.jpg img2.png /text img1.txt img2.txt ``` 2. 标注文件制作 - 使用引用[3]提供的标注模板文件[^3] - 标注内容需包含核心关键词,例如: ```txt # img1.txt 1girl, red dress, standing in garden, sunlight ``` ### 三、关键参数设置 | 参数类型 | 推荐值 | 说明 | |---------|--------|------| | 基础参数 | `pretrained_model: sdxl_base` | 必须指定SDXL基础模型[^1] | | 学习率 | `1e-4`~`2e-4` | 高于普通SD模型训练速率 | | 训练步数 | `1500-3000 steps` | 根据数据集大小调整 | | 分辨率 | `1024x1024` | 需与预处理尺寸一致[^2] | | 网络维度 | `rank=128, alpha=64` | SDXL需要更高维度参数 | | 优化器 | `AdamW8bit` | 显存优化版本 | ### 四、训练流程 1. 模型配置文件选择 ```yaml base_model: sdxl_base.safetensors network_module: lycoris.kohya ``` 2. 启动训练命令示例 ```bash accelerate launch --num_cpu_threads_per_process 2 train_network.py \ --enable_bucket \ --min_bucket_reso=512 \ --max_bucket_reso=1024 \ --network_dim=128 ``` ### 五、常见问题处理 1. **显存不足**:调低`batch_size`(推荐1-2),启用`gradient_checkpointing` 2. **过拟合**:增加`reg_dataset`正则化数据集,降低训练步数 3. **特征丢失**:检查标注文件是否包含必要关键词
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值