图像基础---二值图像的轮廓提取

二值图像的轮廓提取在图像识别和分割中扮演重要角色。通过删除满足特定条件的内部点,将它们替换为背景点,可以得到图像轮廓。本文介绍了如何使用3*3邻域窗口检查像素,当某像素及其所有相邻像素都是目标像素时,将其视为内部点并转换为背景。提供的函数代码展示了这一过程,最后展示了原二值图像和提取轮廓后的图像效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二值图像的轮廓提取对于图像识别,图像分割有着重要意义。该算法的核心就是将图像目标的内部点消除。所谓内部点,我们要根据当前像素点的邻域来进行判断,假设邻域窗口为3*3窗口,如果当前像素P(x,y)的八个邻域像素满足如下条件,则该点即内部点:

  1P(x,y)为目标像素,假设目标像素为黑色0,背景像素为白色255,那么P(x,y)=0;

  2P(x,y)的八个邻域像素均为目标像素0

  我们把满足条件的内部点删除,换为背景点255,即可得到图像轮廓。

  内部点如下图所示:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值