Python-Pandas学习笔记——基础

Pandas

用于数据分析、数据处理以及数据可视化

  • 特点
    - 高性能
    - 容易使用的数据结构、以及数据工具
  • Pandas 主要引入了两种新的数据结构:SeriesDataFrame

  • Series: 类似于一维数组或列表,是由一组数据以及与之相关的数据标签(索引)构成。
  • Series 可以看作是 DataFrame 中的一列,也可以是单独存在的一维数据结构。

  • DataFrame: 类似于一个二维表格,它是 Pandas 中最重要的数据结构。
  • DataFrame 可以看作是由多个 Series 按列排列构成的表格,它既有行索引也有列索引,因此可以方便地进行行列选择、过滤、合并等操作。

  • Series + Series = DataFrame

安装(原生python):pip install 包名 -i https://pypi.tuna.tsinghua.edu.cn/simple

  • 导入pandas(别名pd):import pandas as pd
  • 使用pandas.__version__ 查看版本

Pandas 数据结构 - Series

  • Series 是 Pandas 中的一个核心数据结构,类似于一个一维的数组,具有数据和索引。
  • Series 可以存储任何数据类型(整数、浮点数、字符串等),并通过标签(索引)来访问元素。
  • Series 的数据结构是非常有用的,因为它可以处理各种数据类型,同时保持了高效的数据操作能力,比如可以通过标签来快速访问和操作数据。

特点:

  • 一维数组:Series 中的每个元素都有一个对应的索引值。

  • 索引: 每个数据元素都可以通过标签(索引)来访问,默认情况下索引是从 0 开始的整数,但你也可以自定义索引。

  • 数据类型: Series 可以容纳不同数据类型的元素,包括整数、浮点数、字符串、Python 对象等。

  • 大小不变性:Series 的大小在创建后是不变的,但可以通过某些操作(如 appenddelete)来改变。

  • 操作:Series 支持各种操作,如数学运算、统计分析、字符串处理等。

  • 缺失数据:Series 可以包含缺失数据,Pandas 使用NaN(Not a Number)来表示缺失或无值。

  • 自动对齐:当对多个 Series 进行运算时,Pandas 会自动根据索引对齐数据,这使得数据处理更加高效。

  • 大概长这样

  • Series Index1Series Name1
    Series Index1Series Values1
    Series Index1Series Values1
    Series Index1Series Values1

构造方法

pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)

  • data:Series的数据部分;如果没有提供此参数则创建一个空的series
  • index:Series的索引部分,用于对数据的标记;如果没有提供此参数则创建一个默认的整数索引
  • dtype:指定 Series 的数据类型,如果不提供此参数,则根据数据自动推断数据类型。
  • name:Series 的名称,用于标识 Series 对象。如果提供了此参数,则创建的 Series 对象将具有指定的名称。
  • copy:是否复制数据。默认为 False,表示不复制数据。如果设置为 True,则复制输入的数据。
  • fastpath:是否启用快速路径。默认为 False。启用快速路径可能会在某些情况下提高性能。
  • 如果导入dict字典型,那么key就变成了索引值

Series 方法

import pandas as pd
str = pd.Series() #创建Series

str.方法 #运用
str['索引'] # 返回索引标签 'a' 对应的元素
s[1:4]  # 获取索引为1到3的值

# 索引和值的对应关系
for index, value in s.items():
    print(f"Index: {index}, Value: {value}")
	
# 为特定的索引标签赋值
s['a'] = 10  # 将索引标签 'a' 对应的元素修改为 10

# 通过赋值给新的索引标签来添加元素
s['e'] = 5  # 在 Series 中添加一个新的元素,索引标签为 'e'

# 使用 del 删除指定索引标签的元素。
del s['a']  # 删除索引标签 'a' 对应的元素

# 使用 drop 方法删除一个或多个索引标签,并返回一个新的 Series。
s_dropped = s.drop(['b'])  # 返回一个删除了索引标签 'b' 的新 Series

# 算术运算
result = s * 2  # 所有元素乘以2

# 过滤(使用布尔表达式)
filtered_series = s[s > 2]  # 选择大于2的元素

# 数学函数
import numpy as np
result = np.sqrt(series)  # 对每个元素取平方根
方法名称功能描述
.index获取 Series 的索引
.head(n)返回 Series 的 n 行(默认为 5)
.tail(n)返回 Series 的 n 行(默认为 5)
.iloc[]整数位置选择数据
.loc[]通过标签索引选择数据
.values获取 Series 的数据部分(返回 NumPy 数组)
.dtype返回 Series 中数据的类型
.map(func,na_action=None)指定函数应用于 Series 中的每个元素;(func:函数、字典或 Series(用于映射);na_action:None 或 ‘ignore’(忽略 NaN 值))
.sum(axis=None, skipna=True,level=None,numeric_only=None, min_count=0,**kwargs)输出 Series 的总和;(axis:{0 或 ‘index’},对 Series 无实际作用skipna:是否排除 NA/null 值(默认 True);level:多级索引时指定层级;numeric_only:仅包含 float/int/bool 列(对 Series 无意义);min_count:计算所需的最小有效值数量(默认 0;**kwargs:其他关键字参数)
.mean(axis=None, skipna=True,level=None,numeric_only=None)输出 Series 的平均值(同sum)
.max(axis=None, skipna=True,level=None,numeric_only=None)输出 Series 的最大值(同sum)
.min(axis=None, skipna=True,level=None,numeric_only=None)输出 Series 的最小值(同sum)
.std(axis=None, skipna=True,level=None,ddof=1,numeric_only=None)输出 Series 的标准差(ddof:自由度增量(Delta Degrees of Freedom),计算标准差时的分母为 N - ddof)
.size()输出 元素个数
.idxmax(skipna=True, axis=None)获取最大值的索引(skipna:是否跳过 NaN 值。)
.idxmin(skipna=True, axis=None)获取最小值的索引(skipna:是否跳过 NaN 值。)
.unique()返回 Series 中的唯一值(去重)
.dropna(axis=0, inplace=False)删除 Series 中的缺失值(NaN)(inplace:是否原地修改(默认为 False)。)
.apply(func,convert_dtype=True,args=(),**kwargs)指定函数应用于 Series 中的每个元素,常用于自定义操作(func:自定义函数。;convert_dtype:是否尝试转换结果类型(默认为 True))
.astype(dtype,copy=True,errors=‘raise’)将 Series 转换为指定的类型(dtype:目标类型(如 int、float、str);errors:‘raise’(报错)或 ‘ignore’(忽略错误)。)
.cov(other, min_periods=None;ddof=1)计算 Series 与另一个 Series 的协方差;(other:另一个 Series;min_periods:计算所需的最小样本数。; ddor:自由度增量)
.cumsum(axis=None, skipna=True)返回 Series 的累计求和
.cumprod()返回 Series 的累计乘积
.corr(other,method=‘pearson’,min_periods=None)计算 Series 与另一个 Series 的相关性(皮尔逊相关系数);(method:‘pearson’(默认)、‘spearman’ 或 ‘kendall’。)
.describe(percentiles=None,include=None,exclude=None)返回 Series 的统计描述(如均值、标准差、最小值等);(percentiles:自定义分位数(如 [0.1, 0.5, 0.9]))
.isnull()返回一个布尔 Series,表示每个元素是否为 NaN
.notnull()返回一个布尔 Series,表示每个元素是否不是 NaN
.shape返回 Series 的形状(行数)
.value_counts(normalize=False,sort=True,ascending=False,bins=None,dropna=True)返回 Series 中每个唯一值的出现次数;(normalize:是否返回比例(默认为 False);bins:分箱数(用于数值分段统计))
.sort_values(axis=0, ascending=True, inplace=False, kind=‘quicksort’,na_position=‘last’)对 Series 中的元素进行排序(按值排序);(ascending:升序(True)或降序(False);na_position:‘first’ 或 ‘last’(NaN 值的位置))
.sort_index(axis=0, ascending=True, inplace=False, kind=‘quicksort’, na_position=‘last’, ignore_index=False, key=None)对 Series 的索引进行排序;(ascending:升序(True)或降序(False);na_position:‘first’ 或 ‘last’(NaN 值的位置))
.fillna(value=None, method=None, axis=None, inplace=False, limit=None) (原表拼写为 fillbackvalue)填充 Series 中的缺失值(NaN);(value:填充值(标量、字典或 Series);method:‘ffill’(向前填充)或 ‘bfill’(向后填充))
.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method=‘pad’)替换 Series 中指定的值;(to_replace:被替换的值(标量、列表、字典或正则表达式);value:替换后的值 )
.shift(periods=1, freq=None, axis=0, fill_value=None)将 Series 中的元素按指定的步数平移数据;(periods:移动的步数(正数向下,负数向上);fill_value:填充新位置的值 )
.rank(method=‘average’, ascending=True, na_option=‘keep’, pct=False)返回 Series 中元素的排名;(method:‘average’(默认)、‘min’、‘max’、‘first’、‘dense’ ;pct:是否返回百分比排名 )
.to_list()将 Series 转换Python 列表
.to_frame(name=None)将 Series 转换DataFrame;(name:列名(默认为原 Series 名称或 0))
注意:
  • Series 中的数据是有序的。
  • 可以将 Series 视为带有索引的一维数组。
  • 索引可以是唯一的,但不是必须的。
  • 数据可以是标量、列表、NumPy 数组等。

Pandas 数据结构 - DataFrame

  • DataFrame 是 Pandas 中的另一个核心数据结构,类似于一个二维的表格或数据库中的数据表。
  • DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。
  • DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。
  • DataFrame 提供了各种功能来进行数据访问、筛选、分割、合并、重塑、聚合以及转换等操作。
  • DataFrame 是一个非常灵活且强大的数据结构,广泛用于数据分析、清洗、转换、可视化等任务。
特点:
  1. 二维结构: DataFrame 是一个二维表具有行和列。可以将其视为多个 Series 对象组成的字典。
  2. 列的数据类型: 不同的列可以包含不同的数据类型。
  3. 索引:DataFrame 可以拥有行索引和列索引,类似于 Excel 中的行号和列标。
  4. 大小可变:可以添加和删除列,类似于 Python 中的字典
  5. 自动对齐:DataFrame 会自动对齐索引。
  6. 处理缺失数据:DataFrame 可以包含缺失数据,Pandas 使用 NaN(Not a Number)来表示。
  7. 数据操作:支持数据切片、索引、子集分割等操作。
  8. 时间序列支持:DataFrame 对时间序列数据有特别的支持,可以轻松地进行时间数据的切片、索引和操作
  9. 丰富的数据访问功能:通过 .loc.iloc.query() 方法,可以灵活地访问和筛选数据。
  10. 灵活的数据处理功能:包括数据合并、重塑、透视、分组和聚合等。
  11. 高效的数据输入输出:可以方便地读取和写入数据,支持多种格式,如 CSV、Excel、SQL 数据库和 HDF5 格式。
  12. 描述性统计:提供了一系列方法来计算描述性统计数据,如 .describe().mean().sum() 等。
  13. 灵活的数据对齐和集成:可以轻松地与其他 DataFrame 或 Series 对象进行合并、连接或更新操作。
  14. 转换功能:可以对数据集中的值进行转换,例如使用 .apply() 方法应用自定义函数。
  15. 滚动窗口和时间序列分析:支持对数据集进行滚动窗口统计和时间序列分析。
方法:
  • 构造方法:pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)
import pandas as pd

#创建DataFrame
df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]],columns=['Column1', 'Column2', 'Column3'])

# 通过字典创建 DataFrame
df = pd.DataFrame({'Column1': [1, 2, 3], 'Column2': [4, 5, 6]})

# 通过 NumPy 数组创建 DataFrame
df = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))

# 从 Series 创建 DataFrame
s1 = pd.Series(['Alice', 'Bob', 'Charlie'])
s2 = pd.Series([25, 30, 35])
s3 = pd.Series(['New York', 'Los Angeles', 'Chicago'])
df = pd.DataFrame({'Name': s1, 'Age': s2, 'City': s3})

# 修改DataFrame

# 添加列
df['Column1'] = [10, 11, 12] #修改**列**数据:直接对列进行赋值。
df['NewColumn1'] = [10, 11, 12] #添加新**列**:给新列赋值。

# 添加行
# 使用 loc 为特定索引添加新行
df.loc[3] = [13, 14, 15, 16]

# 使用 append 添加新行到末尾
new_row = {'Column1': 13, 'Column2': 14, 'NewColumn': 16}
df = df.append(new_row, ignore_index=True)

# 使用concat添加新行
new_row = pd.DataFrame([[4, 7]], columns=['A', 'B'])  # 创建一个只包含新行的DataFrame
df = pd.concat([df, new_row], ignore_index=True)  # 将新行添加到原始DataFrame

# 删除DataFrame元素
 
#删除列
df_dropped = df.drop('Column1', axis=1)

#删除行
df_dropped = df.drop(0)  # 删除索引为 0 的行

# DataFrame 的统计分析

df.describe() # 描述性统计

# 计算统计数据:使用聚合函数如 .sum()求和、.mean()平均值、.max()最大值 等。
df['Column1'].sum()
df.mean()

# DataFrame 的索引操作

df.reset_index(drop=True)#重置索引

df.set_index('Column1')#设置索引

# 索引和切片
print(df[['Name', 'Age']])  # 提取多列
print(df[1:3])               # 切片行
print(df.loc[:, 'Name'])     # 提取单列
print(df.loc[1:2, ['Name', 'Age']])  # 标签索引提取指定行列
print(df.iloc[:, 1:])        # 位置索引提取指定列

df[df['Column1'] > 2]# DataFrame 的布尔索引

df.dtypes # 查看数据类型

df['Column1'] = df['Column1'].astype('float64') #转换数据类型

# DataFrame 的合并与分割

# 纵向合并
pd.concat([df1, df2], ignore_index=True)

# 横向合并
pd.merge(df1, df2, on='Column1')

# 长格式转宽格式
df_pivot = df.pivot(index='Column1', columns='Column2', values='Column3')

# 宽格式转长格式
df_melt = df.melt(id_vars='Column1', value_vars=['Column2', 'Column3'])

方法名称功能描述
.to_csv(‘名称’)将 DataFrame 导出为 CSV 文件
.to_excel(‘名称’)将 DataFrame 导出为 Excel 文件
.to_json(‘名称’)将 DataFrame 导出为 JSON 格式
.to_sql(‘名称’)将 DataFrame 导出为 SQL 数据库
.concat()按行或按列连接多个 DataFrame
.head(n)返回 DataFrame 的 n 行数据(默认前 5 行)
.tail(n)返回 DataFrame 的 n 行数据(默认后 5 行)
.info()显示 DataFrame 的简要信息,包括列名、数据类型、非空值数量等
.dtypes返回每一列的数值数据类型
.describe()返回 DataFrame 数值列的统计信息,如均值、标准差、最小值等
.groupby(by)分组操作,用于按某一列分组进行汇总统计
.mean()返回平均值
.sun()返回
.shape返回 DataFrame 的行数和列数(行数, 列数)
.columns返回 DataFrame 的所有列名
.index返回 DataFrame 的行索引
.set_index()设置 DataFrame 的索引
.reset_index()重置 DataFrame 的索引
.sort_values(by=“”)按照指定列排序
.sort_index()行索引排序
.dropna()删除含有缺失值(NaN)的行或列
.drop_duplicates()删除重复的行
.fillna(value)指定的值填充缺失值
.isnull()判断缺失值,返回一个布尔值 DataFrame
.notnull()判断非缺失值,返回一个布尔值 DataFrame
.at[]访问 DataFrame 中单个元素(比 loc[] 更高效)
.iat[]访问 DataFrame 中单个元素(比 iloc[] 更高效)
.apply(func)对 DataFrame 或 Series 应用一个函数
.applymap(func)对 DataFrame 的每个元素应用函数(仅对 DataFrame)
.pivot_table()创建透视表
.merge()合并多个 DataFrame(类似 SQL 的 JOIN 操作)
.query()使用 SQL 风格的语法查询 DataFrame
.duplicated()返回布尔值 DataFrame,指示每行是否是重复的
.transpose()转置 DataFrame(行列交换)

Pandas数据读取

  • 导入pandas
    import pandas as pd
    
  • Pandas需要先读取表格类型的数据,再进行分析
  • 数据类型说明Pandas读取方法
    csv、tsv、txt使用逗号分隔、tab分隔的纯文本文件pd.read_csv
    excel微软xls或xlsx文件pd.read_excel
    mysql关系类型数据库表pd.read_sql
data = pd.read_csv(`文件路径`) #读取数据

data.head(n) #查看前n行数据

data.shape #查看数据的形状,返回(行数、列数)

data.columns #查看列名列表

data.index #查看索引列

data.dtypes #查看每列的数据类型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值