Pandas
用于数据分析、数据处理以及数据可视化
- 特点
- 高性能
- 容易使用的数据结构、以及数据工具
- Pandas 主要引入了两种新的数据结构:
Series
和DataFrame
。
Series
: 类似于一维数组或列表,是由一组数据以及与之相关的数据标签(索引)构成。Series
可以看作是DataFrame
中的一列,也可以是单独存在的一维数据结构。
DataFrame
: 类似于一个二维表格,它是 Pandas 中最重要的数据结构。DataFrame
可以看作是由多个Series
按列排列构成的表格,它既有行索引也有列索引,因此可以方便地进行行列选择、过滤、合并等操作。
Series
+Series
=DataFrame
安装(原生python):pip install 包名 -i https://pypi.tuna.tsinghua.edu.cn/simple
- 导入pandas(别名
pd
):import pandas as pd
- 使用
pandas.__version__
查看版本
Pandas 数据结构 - Series
- Series 是 Pandas 中的一个核心数据结构,类似于一个一维的数组,具有数据和索引。
- Series 可以存储任何数据类型(整数、浮点数、字符串等),并通过标签(索引)来访问元素。
- Series 的数据结构是非常有用的,因为它可以处理各种数据类型,同时保持了高效的数据操作能力,比如可以通过标签来快速访问和操作数据。
特点:
-
一维数组:Series 中的每个元素都有一个对应的索引值。
-
索引: 每个数据元素都可以通过标签(索引)来访问,默认情况下索引是从 0 开始的整数,但你也可以自定义索引。
-
数据类型: Series 可以容纳不同数据类型的元素,包括整数、浮点数、字符串、Python 对象等。
-
大小不变性:Series 的大小在创建后是不变的,但可以通过某些操作(如
append
或delete
)来改变。 -
操作:Series 支持各种操作,如数学运算、统计分析、字符串处理等。
-
缺失数据:Series 可以包含缺失数据,Pandas 使用NaN(Not a Number)来表示缺失或无值。
-
自动对齐:当对多个 Series 进行运算时,Pandas 会自动根据索引对齐数据,这使得数据处理更加高效。
-
大概长这样
-
Series Index1 Series Name1 Series Index1 Series Values1 Series Index1 Series Values1 Series Index1 Series Values1
构造方法
pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)
data
:Series的数据部分;如果没有提供此参数则创建一个空的seriesindex
:Series的索引部分,用于对数据的标记;如果没有提供此参数则创建一个默认的整数索引dtype
:指定 Series 的数据类型,如果不提供此参数,则根据数据自动推断数据类型。name
:Series 的名称,用于标识 Series 对象。如果提供了此参数,则创建的 Series 对象将具有指定的名称。copy
:是否复制数据。默认为 False,表示不复制数据。如果设置为 True,则复制输入的数据。fastpath
:是否启用快速路径。默认为 False。启用快速路径可能会在某些情况下提高性能。- 如果导入
dict
字典型,那么key就变成了索引值
Series 方法
import pandas as pd
str = pd.Series() #创建Series
str.方法 #运用
str['索引'] # 返回索引标签 'a' 对应的元素
s[1:4] # 获取索引为1到3的值
# 索引和值的对应关系
for index, value in s.items():
print(f"Index: {index}, Value: {value}")
# 为特定的索引标签赋值
s['a'] = 10 # 将索引标签 'a' 对应的元素修改为 10
# 通过赋值给新的索引标签来添加元素
s['e'] = 5 # 在 Series 中添加一个新的元素,索引标签为 'e'
# 使用 del 删除指定索引标签的元素。
del s['a'] # 删除索引标签 'a' 对应的元素
# 使用 drop 方法删除一个或多个索引标签,并返回一个新的 Series。
s_dropped = s.drop(['b']) # 返回一个删除了索引标签 'b' 的新 Series
# 算术运算
result = s * 2 # 所有元素乘以2
# 过滤(使用布尔表达式)
filtered_series = s[s > 2] # 选择大于2的元素
# 数学函数
import numpy as np
result = np.sqrt(series) # 对每个元素取平方根
方法名称 | 功能描述 |
---|---|
.index | 获取 Series 的索引 |
.head(n) | 返回 Series 的前 n 行(默认为 5) |
.tail(n) | 返回 Series 的后 n 行(默认为 5) |
.iloc[] | 按整数位置选择数据 |
.loc[] | 通过标签索引来选择数据 |
.values | 获取 Series 的数据部分(返回 NumPy 数组) |
.dtype | 返回 Series 中数据的类型 |
.map(func,na_action=None) | 将指定函数应用于 Series 中的每个元素;(func:函数、字典或 Series(用于映射);na_action:None 或 ‘ignore’(忽略 NaN 值)) |
.sum(axis=None, skipna=True,level=None,numeric_only=None, min_count=0,**kwargs ) | 输出 Series 的总和;(axis:{0 或 ‘index’},对 Series 无实际作用skipna:是否排除 NA/null 值(默认 True);level:多级索引时指定层级;numeric_only:仅包含 float/int/bool 列(对 Series 无意义);min_count:计算所需的最小有效值数量(默认 0;**kwargs :其他关键字参数) |
.mean(axis=None, skipna=True,level=None,numeric_only=None) | 输出 Series 的平均值(同sum ) |
.max(axis=None, skipna=True,level=None,numeric_only=None) | 输出 Series 的最大值(同sum ) |
.min(axis=None, skipna=True,level=None,numeric_only=None) | 输出 Series 的最小值(同sum ) |
.std(axis=None, skipna=True,level=None,ddof=1,numeric_only=None) | 输出 Series 的标准差(ddof:自由度增量(Delta Degrees of Freedom),计算标准差时的分母为 N - ddof) |
.size() | 输出 元素个数 |
.idxmax(skipna=True, axis=None) | 获取最大值的索引(skipna:是否跳过 NaN 值。) |
.idxmin(skipna=True, axis=None) | 获取最小值的索引(skipna:是否跳过 NaN 值。) |
.unique() | 返回 Series 中的唯一值(去重) |
.dropna(axis=0, inplace=False) | 删除 Series 中的缺失值(NaN)(inplace:是否原地修改(默认为 False)。) |
.apply(func,convert_dtype=True,args=(),**kwargs ) | 将指定函数应用于 Series 中的每个元素,常用于自定义操作(func:自定义函数。;convert_dtype:是否尝试转换结果类型(默认为 True)) |
.astype(dtype,copy=True,errors=‘raise’) | 将 Series 转换为指定的类型(dtype:目标类型(如 int、float、str);errors:‘raise’(报错)或 ‘ignore’(忽略错误)。) |
.cov(other, min_periods=None;ddof=1) | 计算 Series 与另一个 Series 的协方差;(other:另一个 Series;min_periods:计算所需的最小样本数。; ddor:自由度增量) |
.cumsum(axis=None, skipna=True) | 返回 Series 的累计求和 |
.cumprod() | 返回 Series 的累计乘积 |
.corr(other,method=‘pearson’,min_periods=None) | 计算 Series 与另一个 Series 的相关性(皮尔逊相关系数);(method:‘pearson’(默认)、‘spearman’ 或 ‘kendall’。) |
.describe(percentiles=None,include=None,exclude=None) | 返回 Series 的统计描述(如均值、标准差、最小值等);(percentiles:自定义分位数(如 [0.1, 0.5, 0.9])) |
.isnull() | 返回一个布尔 Series,表示每个元素是否为 NaN |
.notnull() | 返回一个布尔 Series,表示每个元素是否不是 NaN |
.shape | 返回 Series 的形状(行数) |
.value_counts(normalize=False,sort=True,ascending=False,bins=None,dropna=True) | 返回 Series 中每个唯一值的出现次数;(normalize:是否返回比例(默认为 False);bins:分箱数(用于数值分段统计)) |
.sort_values(axis=0, ascending=True, inplace=False, kind=‘quicksort’,na_position=‘last’) | 对 Series 中的元素进行排序(按值排序);(ascending:升序(True)或降序(False);na_position:‘first’ 或 ‘last’(NaN 值的位置)) |
.sort_index(axis=0, ascending=True, inplace=False, kind=‘quicksort’, na_position=‘last’, ignore_index=False, key=None) | 对 Series 的索引进行排序;(ascending:升序(True)或降序(False);na_position:‘first’ 或 ‘last’(NaN 值的位置)) |
.fillna(value=None, method=None, axis=None, inplace=False, limit=None) (原表拼写为 fillbackvalue) | 填充 Series 中的缺失值(NaN);(value:填充值(标量、字典或 Series);method:‘ffill’(向前填充)或 ‘bfill’(向后填充)) |
.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method=‘pad’) | 替换 Series 中指定的值;(to_replace:被替换的值(标量、列表、字典或正则表达式);value:替换后的值 ) |
.shift(periods=1, freq=None, axis=0, fill_value=None) | 将 Series 中的元素按指定的步数平移数据;(periods:移动的步数(正数向下,负数向上);fill_value:填充新位置的值 ) |
.rank(method=‘average’, ascending=True, na_option=‘keep’, pct=False) | 返回 Series 中元素的排名;(method:‘average’(默认)、‘min’、‘max’、‘first’、‘dense’ ;pct:是否返回百分比排名 ) |
.to_list() | 将 Series 转换为 Python 列表 |
.to_frame(name=None) | 将 Series 转换为 DataFrame;(name:列名(默认为原 Series 名称或 0)) |
注意:
- Series 中的数据是有序的。
- 可以将 Series 视为带有索引的一维数组。
- 索引可以是唯一的,但不是必须的。
- 数据可以是标量、列表、NumPy 数组等。
Pandas 数据结构 - DataFrame
- DataFrame 是 Pandas 中的另一个核心数据结构,类似于一个二维的表格或数据库中的数据表。
- DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。
- DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。
- DataFrame 提供了各种功能来进行数据访问、筛选、分割、合并、重塑、聚合以及转换等操作。
- DataFrame 是一个非常灵活且强大的数据结构,广泛用于数据分析、清洗、转换、可视化等任务。
特点:
- 二维结构: DataFrame 是一个二维表具有行和列。可以将其视为多个 Series 对象组成的字典。
- 列的数据类型: 不同的列可以包含不同的数据类型。
- 索引:DataFrame 可以拥有行索引和列索引,类似于 Excel 中的行号和列标。
- 大小可变:可以添加和删除列,类似于 Python 中的字典。
- 自动对齐:DataFrame 会自动对齐索引。
- 处理缺失数据:DataFrame 可以包含缺失数据,Pandas 使用 NaN(Not a Number)来表示。
- 数据操作:支持数据切片、索引、子集分割等操作。
- 时间序列支持:DataFrame 对时间序列数据有特别的支持,可以轻松地进行时间数据的切片、索引和操作。
- 丰富的数据访问功能:通过
.loc
、.iloc
和.query()
方法,可以灵活地访问和筛选数据。 - 灵活的数据处理功能:包括数据合并、重塑、透视、分组和聚合等。
- 高效的数据输入输出:可以方便地读取和写入数据,支持多种格式,如 CSV、Excel、SQL 数据库和 HDF5 格式。
- 描述性统计:提供了一系列方法来计算描述性统计数据,如
.describe()
、.mean()
、.sum()
等。 - 灵活的数据对齐和集成:可以轻松地与其他 DataFrame 或 Series 对象进行合并、连接或更新操作。
- 转换功能:可以对数据集中的值进行转换,例如使用
.apply()
方法应用自定义函数。 - 滚动窗口和时间序列分析:支持对数据集进行滚动窗口统计和时间序列分析。
方法:
- 构造方法:
pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)
import pandas as pd
#创建DataFrame
df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]],columns=['Column1', 'Column2', 'Column3'])
# 通过字典创建 DataFrame
df = pd.DataFrame({'Column1': [1, 2, 3], 'Column2': [4, 5, 6]})
# 通过 NumPy 数组创建 DataFrame
df = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
# 从 Series 创建 DataFrame
s1 = pd.Series(['Alice', 'Bob', 'Charlie'])
s2 = pd.Series([25, 30, 35])
s3 = pd.Series(['New York', 'Los Angeles', 'Chicago'])
df = pd.DataFrame({'Name': s1, 'Age': s2, 'City': s3})
# 修改DataFrame
# 添加列
df['Column1'] = [10, 11, 12] #修改**列**数据:直接对列进行赋值。
df['NewColumn1'] = [10, 11, 12] #添加新**列**:给新列赋值。
# 添加行
# 使用 loc 为特定索引添加新行
df.loc[3] = [13, 14, 15, 16]
# 使用 append 添加新行到末尾
new_row = {'Column1': 13, 'Column2': 14, 'NewColumn': 16}
df = df.append(new_row, ignore_index=True)
# 使用concat添加新行
new_row = pd.DataFrame([[4, 7]], columns=['A', 'B']) # 创建一个只包含新行的DataFrame
df = pd.concat([df, new_row], ignore_index=True) # 将新行添加到原始DataFrame
# 删除DataFrame元素
#删除列
df_dropped = df.drop('Column1', axis=1)
#删除行
df_dropped = df.drop(0) # 删除索引为 0 的行
# DataFrame 的统计分析
df.describe() # 描述性统计
# 计算统计数据:使用聚合函数如 .sum()求和、.mean()平均值、.max()最大值 等。
df['Column1'].sum()
df.mean()
# DataFrame 的索引操作
df.reset_index(drop=True)#重置索引
df.set_index('Column1')#设置索引
# 索引和切片
print(df[['Name', 'Age']]) # 提取多列
print(df[1:3]) # 切片行
print(df.loc[:, 'Name']) # 提取单列
print(df.loc[1:2, ['Name', 'Age']]) # 标签索引提取指定行列
print(df.iloc[:, 1:]) # 位置索引提取指定列
df[df['Column1'] > 2]# DataFrame 的布尔索引
df.dtypes # 查看数据类型
df['Column1'] = df['Column1'].astype('float64') #转换数据类型
# DataFrame 的合并与分割
# 纵向合并
pd.concat([df1, df2], ignore_index=True)
# 横向合并
pd.merge(df1, df2, on='Column1')
# 长格式转宽格式
df_pivot = df.pivot(index='Column1', columns='Column2', values='Column3')
# 宽格式转长格式
df_melt = df.melt(id_vars='Column1', value_vars=['Column2', 'Column3'])
方法名称 | 功能描述 |
---|---|
.to_csv(‘名称’) | 将 DataFrame 导出为 CSV 文件 |
.to_excel(‘名称’) | 将 DataFrame 导出为 Excel 文件 |
.to_json(‘名称’) | 将 DataFrame 导出为 JSON 格式 |
.to_sql(‘名称’) | 将 DataFrame 导出为 SQL 数据库 |
.concat() | 按行或按列连接多个 DataFrame |
.head(n) | 返回 DataFrame 的前 n 行数据(默认前 5 行) |
.tail(n) | 返回 DataFrame 的后 n 行数据(默认后 5 行) |
.info() | 显示 DataFrame 的简要信息,包括列名、数据类型、非空值数量等 |
.dtypes | 返回每一列的数值数据类型 |
.describe() | 返回 DataFrame 数值列的统计信息,如均值、标准差、最小值等 |
.groupby(by) | 分组操作,用于按某一列分组进行汇总统计 |
.mean() | 返回平均值 |
.sun() | 返回和 |
.shape | 返回 DataFrame 的行数和列数(行数, 列数) |
.columns | 返回 DataFrame 的所有列名 |
.index | 返回 DataFrame 的行索引 |
.set_index() | 设置 DataFrame 的索引 |
.reset_index() | 重置 DataFrame 的索引 |
.sort_values(by=“”) | 按照指定列排序 |
.sort_index() | 按行索引排序 |
.dropna() | 删除含有缺失值(NaN)的行或列 |
.drop_duplicates() | 删除重复的行 |
.fillna(value) | 用指定的值填充缺失值 |
.isnull() | 判断缺失值,返回一个布尔值 DataFrame |
.notnull() | 判断非缺失值,返回一个布尔值 DataFrame |
.at[] | 访问 DataFrame 中单个元素(比 loc[] 更高效) |
.iat[] | 访问 DataFrame 中单个元素(比 iloc[] 更高效) |
.apply(func) | 对 DataFrame 或 Series 应用一个函数 |
.applymap(func) | 对 DataFrame 的每个元素应用函数(仅对 DataFrame) |
.pivot_table() | 创建透视表 |
.merge() | 合并多个 DataFrame(类似 SQL 的 JOIN 操作) |
.query() | 使用 SQL 风格的语法查询 DataFrame |
.duplicated() | 返回布尔值 DataFrame,指示每行是否是重复的 |
.transpose() | 转置 DataFrame(行列交换) |
Pandas数据读取
- 导入pandas
import pandas as pd
- Pandas需要先读取表格类型的数据,再进行分析
-
数据类型 说明 Pandas读取方法 csv、tsv、txt 使用逗号分隔、tab分隔的纯文本文件 pd.read_csv
excel 微软xls或xlsx文件 pd.read_excel
mysql 关系类型数据库表 pd.read_sql
data = pd.read_csv(`文件路径`) #读取数据
data.head(n) #查看前n行数据
data.shape #查看数据的形状,返回(行数、列数)
data.columns #查看列名列表
data.index #查看索引列
data.dtypes #查看每列的数据类型